Robust chaos suppression for the family of nonlinear chaotic systems with noise perturbation

Abstract This paper investigates the robust chaos suppression problem for some classical Rossler systems using the sliding mode controller (SMC). Based on the proportional-integral (PI) switching surface, a SMC is derived to not only guarantee asymptotical stability of the equilibrium points of the Rossler systems but also reduce the effect of noise perturbation to an H ∞ -norm performance. The parameter matrix necessary for constructing both PI switching surface and the SMC can be easily solved by the linear matrix inequality (LMI) optimization technique. Finally, two illustrative examples are provided to demonstrate the efficacy of the proposed control methodology.

[1]  Dynamic modeling of chaos and turbulence , 2005 .

[2]  Xiao-Song Yang,et al.  Chaos and transient chaos in simple Hopfield neural networks , 2005, Neurocomputing.

[3]  C. Lien H∞ non-fragile observer-based controls of dynamical systems via LMI optimization approach , 2007 .

[4]  Juan Gonzalo Barajas-Ramírez,et al.  Fuzzy Chaos Synchronization via sampled Driving Signals , 2004, Int. J. Bifurc. Chaos.

[5]  H. N. Agiza,et al.  Chaos synchronization of Lü dynamical system , 2004 .

[6]  Wei-Der Chang,et al.  Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems , 2005 .

[7]  J. Yan,et al.  H 8 controlling hyperchaos of the Rssler system with input nonlinearity , 2004 .

[8]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[9]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[10]  A. Stoorvogel The H∞ control problem , 1992 .

[11]  Jinde Cao,et al.  Adaptive exponential synchronization of delayed chaotic networks , 2006 .

[12]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[13]  Yuzo Ohta,et al.  Parametric absolute stability of Lur'e systems , 1998, IEEE Trans. Autom. Control..

[14]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[15]  José Manoel Balthazar,et al.  On an optimal control design for Rössler system , 2004 .

[16]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[17]  Yuxiang Chen,et al.  Lag synchronization of structurally nonequivalent chaotic systems with time delays , 2007 .

[18]  Jitao Sun,et al.  Controlling chaotic Lu systems using impulsive control , 2005 .

[19]  Pei Yu,et al.  Chaos control for the family of Rössler systems using feedback controllers , 2006 .

[20]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[21]  V. Kolmanovskii,et al.  Applied Theory of Functional Differential Equations , 1992 .

[22]  Jitao Sun,et al.  Impulsive control and synchronization of Chua's oscillators , 2004, Math. Comput. Simul..