Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species

[1]  J. Stachowicz,et al.  Predicting consequences of climate change for ecosystem functioning: variation across trophic levels, species and individuals , 2015 .

[2]  Sean C. Anderson,et al.  Paleontological baselines for evaluating extinction risk in the modern oceans , 2015, Science.

[3]  A. Altieri,et al.  Climate change and dead zones , 2015, Global change biology.

[4]  Pippa J. Moore,et al.  Climate velocity and the future global redistribution of marine biodiversity , 2015 .

[5]  Barbara L Banbury,et al.  Reol: R interface to the Encyclopedia of Life , 2014, Ecology and evolution.

[6]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[7]  P. Schulte,et al.  Responses to temperature and hypoxia as interacting stressors in fish: implications for adaptation to environmental change. , 2013, Integrative and comparative biology.

[8]  L. Álvarez-Lajonchère,et al.  Aquaculture species selection method applied to marine fish in the Caribbean , 2013 .

[9]  R. Ostfeld,et al.  Climate Change and Infectious Diseases: From Evidence to a Predictive Framework , 2013, Science.

[10]  G. Claireaux,et al.  Trade-off between thermal sensitivity, hypoxia tolerance and growth in fish , 2013 .

[11]  P C Wainwright,et al.  rfishbase: exploring, manipulating and visualizing FishBase data from R. , 2012, Journal of fish biology.

[12]  R. Naylor,et al.  Searching for Solutions in Aquaculture: Charting a Sustainable Course , 2012 .

[13]  Morten Rye,et al.  The importance of selective breeding in aquaculture to meet future demands for animal protein: A review , 2012 .

[14]  A. Farrell,et al.  Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event , 2012, PloS one.

[15]  R. Vaquer-Sunyer,et al.  Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms , 2011 .

[16]  D. Little,et al.  Aquaculture: global status and trends , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  M. Holmer Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. , 2010 .

[18]  John G. Pope,et al.  Size, growth, temperature and the natural mortality of marine fish , 2010 .

[19]  S. Robinson,et al.  Food Security: The Challenge of Feeding 9 Billion People , 2010, Science.

[20]  Yngvar Olsen,et al.  Will the Oceans Help Feed Humanity? , 2009, BioScience.

[21]  Carlos M. Duarte,et al.  Thresholds of hypoxia for marine biodiversity , 2008, Proceedings of the National Academy of Sciences.

[22]  G. Nilsson,et al.  Does size matter for hypoxia tolerance in fish? , 2008, Biological reviews of the Cambridge Philosophical Society.

[23]  B. Worm,et al.  Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming , 2008 .

[24]  Zonghui Yuan,et al.  Environmental impact of aquaculture and countermeasures to aquaculture pollution in China , 2007, Environmental science and pollution research international.

[25]  D. Pauly,et al.  A Global Ex-vessel Fish Price Database: Construction and Applications , 2007 .

[26]  S. Einum,et al.  Genetically enhanced growth causes increased mortality in hypoxic environments , 2007, Biology Letters.

[27]  L. Buck,et al.  Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. , 2007, Annual review of physiology.

[28]  M. Burke,et al.  AQUACULTURE AND OCEAN RESOURCES: Raising Tigers of the Sea , 2005 .

[29]  D.B. Colbourne Another perspective on challenges in open ocean aquaculture development , 2005, IEEE Journal of Oceanic Engineering.

[30]  K. Winemiller Life history strategies, population regulation, and implications for fisheries management , 2005 .

[31]  G. A. McFarlane,et al.  Marine fish life history strategies: applications to fishery management , 2003 .

[32]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[33]  Loic Quemener,et al.  Selection method of new candidates for finfish aquaculture: the case of the French Atlantic, the Channel and the North Sea coasts , 2002 .

[34]  R. Ostfeld,et al.  Climate Warming and Disease Risks for Terrestrial and Marine Biota , 2002, Science.

[35]  R. Naylor,et al.  Marine Aquaculture in the United States: Environmental impacts and policy options , 2001 .

[36]  B. Molony,et al.  Environmental requirements and tolerances of Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta) with special reference to Western Australia: A review , 2001 .

[37]  H. Mooney,et al.  Effect of aquaculture on world fish supplies , 2000, Nature.

[38]  D. Pauly Tropical fishes: patterns and propensities* , 1998 .

[39]  David R. Anderson,et al.  Model Based Inference in the Life Sciences: A Primer on Evidence , 1998 .

[40]  E. Ziegel,et al.  Bootstrapping: A Nonparametric Approach to Statistical Inference , 1993 .

[41]  K. Rose,et al.  Patterns of Life-History Diversification in North American Fishes: implications for Population Regulation , 1992 .

[42]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[43]  K. Hindar,et al.  Genetic Effects of Cultured Fish on Natural Fish Populations , 1991 .

[44]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .