Massively-Parallel Simulation of Biochemical Systems

Understanding biological evolution prompts for a detailed understanding of the realized phenotype. Biochemical and gene regulatory dynamics are a cornerstone for the physiology of the cell and must therefore be regarded as one of the major aspects of such a phenotype. Experimental insight into molecular parameters is, however, hard to come by. Model development therefore requires computational parameter estimation. At the same time, design of cellular dynamics is highly efficient when done in-silico. We therefore developed a computational approach to allow for massively parallel simulation of biological molecular networks that leverage the massively-parallel computing power of modern graphics cards and other many-core programming paradigms. Our system can automatically compile standard SBML files into CUDA code, using analytic derivatives, and computing standard measures of complex dynamics like the Lyapunov exponent.

[1]  Masaru Tomita,et al.  Toward large-scale modeling of the microbial cell for computer simulation. , 2004, Journal of biotechnology.

[2]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[3]  W. Wenzel,et al.  Scaling behavior of stochastic minimization algorithms in a perfect funnel landscape , 1999 .

[4]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[5]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[6]  Kay Hamacher,et al.  Adaptive extremal optimization by detrended fluctuation analysis , 2007, J. Comput. Phys..

[7]  Wolfgang Banzhaf,et al.  Distributed genetic programming on GPUs using CUDA , 2011 .

[8]  Hong Li,et al.  Efficient Parallelization of the Stochastic Simulation Algorithm for Chemically Reacting Systems On the Graphics Processing Unit , 2010, Int. J. High Perform. Comput. Appl..

[9]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[10]  Kay Hamacher Adaptation in stochastic tunneling global optimization of complex potential energy landscapes , 2006 .

[11]  Natal A. W. van Riel,et al.  Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments , 2006, Briefings Bioinform..

[12]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[13]  Stefanie Widder,et al.  The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks , 2006, Bioinform..

[14]  Hong Li,et al.  Algorithms and Software for Stochastic Simulation of Biochemical Reacting Systems , 2008, Biotechnology progress.

[15]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[16]  Eduardo D. Sontag,et al.  Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks , 2007, PLoS Comput. Biol..

[17]  Ravi Iyengar Why We Need Quantitative Dynamic Models , 2009, Science Signaling.

[18]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[19]  M. Lynch The evolution of genetic networks by non-adaptive processes , 2007, Nature Reviews Genetics.

[20]  O E Rössler,et al.  Chaos in abstract kinetics: two prototypes. , 1977, Bulletin of mathematical biology.

[21]  Timothy G. Mattson,et al.  Patterns for parallel programming , 2004 .

[22]  M. Januszewski,et al.  Accelerating numerical solution of stochastic differential equations with CUDA , 2009, Comput. Phys. Commun..

[23]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[24]  K. Hamacher On stochastic global optimization of one-dimensional functions , 2005 .

[25]  H V Westerhoff,et al.  Approaches to Biosimulation of Cellular Processes , 2006, Journal of biological physics.

[26]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .