Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance

Understanding defects in Cu(In,Ga)(Se,S)2 (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X‐ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga)Cu) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current‐voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga)Cu defects on device PV performance is also established.

[1]  Susanne Siebentritt,et al.  The electronic structure of chalcopyrites—bands, point defects and grain boundaries , 2010 .

[2]  Elisabeth Chassaing,et al.  Non‐vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers , 2010 .

[3]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[4]  Teodor K. Todorov,et al.  Direct Liquid Coating of Chalcopyrite Light‐Absorbing Layers for Photovoltaic Devices , 2010 .

[5]  H. Schock,et al.  Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells , 2010 .

[6]  L. Reining,et al.  Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study. , 2010, Physical review letters.

[7]  A. Kellock,et al.  Optimization of CIGS-Based PV Device through Antimony Doping , 2010 .

[8]  Nelson E. Coates,et al.  Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals. , 2010, Journal of the American Chemical Society.

[9]  W. Jaegermann,et al.  Interface Engineering of Inorganic Thin‐Film Solar Cells – Materials‐Science Challenges for Advanced Physical Concepts , 2009 .

[10]  Yang Yang,et al.  Low-temperature processing of a solution-deposited CuInSSe thin-film solar cell , 2009 .

[11]  H. Hillhouse,et al.  Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics , 2009 .

[12]  M. Edoff,et al.  Understanding defect-related issues limiting efficiency of CIGS solar cells , 2009 .

[13]  H. Hillhouse,et al.  Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.

[14]  Katsuhiro Akimoto,et al.  Effect of Se/(Ga+In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell , 2009 .

[15]  H. Schock,et al.  Origin of defects in CuIn1 − xGaxSe2 solar cells with varied Ga content , 2009 .

[16]  Wei Liu,et al.  Hydrazine-based deposition route for device-quality CIGS films , 2009 .

[17]  M. Edoff,et al.  Reinterpretation of defect levels derived from capacitance spectroscopy of CIGSe solar cells , 2009 .

[18]  S. Kelley,et al.  Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles , 2008 .

[19]  Wei Liu,et al.  A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .

[20]  S. Ishizuka,et al.  Effects of annealing under various atmospheres on electrical properties of Cu(In,Ga)Se2 films and CdS/Cu(In,Ga)Se2 heterostructures , 2008 .

[21]  Martin A. Green,et al.  Solar Energy Conversion Toward 1 Terawatt , 2008 .

[22]  Alex Zunger,et al.  Intrinsic DX centers in ternary chalcopyrite semiconductors. , 2008, Physical review letters.

[23]  Suhuai Wei,et al.  Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films. , 2007, Physical review letters.

[24]  B. McCandless,et al.  Materials Challenges for CdTe and CuInSe_2 Photovoltaics , 2007 .

[25]  I. Balberg,et al.  Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films , 2007 .

[26]  Alex Zunger,et al.  Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex , 2006 .

[27]  Rommel Noufi,et al.  Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells , 2006 .

[28]  D. Lincot,et al.  Admittance spectroscopy of cadmium free CIGS solar cells heterointerfaces , 2006 .

[29]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[30]  V. A. Ananichev,et al.  Investigation of the Saturated Vapor Pressure of Zinc, Selenium, and Zinc Selenide , 2005 .

[31]  J. Sites,et al.  A comparative study of defect states in evaporated and selenized CIGS(S) solar cells , 2005 .

[32]  Brian E. McCandless,et al.  CdTe contacts for CdTe/CdS solar cells: effect of Cu thickness, surface preparation and recontacting on device performance and stability , 2005 .

[33]  M. Edoff,et al.  Compensating donors in Cu(In,Ga)Se2 absorbers of solar cells , 2005 .

[34]  J. Sites,et al.  Secondary barriers in CdS–CuIn1−xGaxSe2 solar cells , 2005 .

[35]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[36]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[37]  Daniel Abou-Ras,et al.  Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells , 2004 .

[38]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[39]  U. Rau,et al.  Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition , 2003 .

[40]  M. Bodegård,et al.  The ‘defected layer’ and the mechanism of the interface-related metastable behavior in the ZnO/CdS/Cu(In,Ga)Se2 devices , 2003 .

[41]  A. Rockett,et al.  Near-surface defect distributions in Cu(In,Ga)Se2 , 2003 .

[42]  W. Shafarman,et al.  Distinguishing metastable changes in bulk CIGS defect densities from interface effects , 2003 .

[43]  H. Schock,et al.  Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films , 2003 .

[44]  Omar Isaac Asensio,et al.  Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .

[45]  U. Rau,et al.  Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells , 2002 .

[46]  S. Zhang,et al.  Reconstruction and Energetics of the Polar (112) and ( 1 1 2 ) Versus the Non-Polar (220) Surfaces of CuInSe2: Preprint , 2002 .

[47]  J. Parisi,et al.  Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells , 2002 .

[48]  Rommel Noufi,et al.  Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells , 2002 .

[49]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[50]  Matthew Copel,et al.  Medium-energy ion scattering for analysis of microelectronic materials , 2000, IBM J. Res. Dev..

[51]  J. Sites,et al.  Thin-film CuIn1−xGaxSe2 photovoltaic cells from solution-based precursor layers , 1999 .

[52]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[53]  S. Nishiwaki,et al.  Microstructure of Cu(In,Ga)Se2 Films Deposited in Low Se Vapor Pressure , 1999 .

[54]  H. Schock,et al.  Model for electronic transport in Cu(In,Ga)Se2 solar cells , 1998 .

[55]  H. Schock,et al.  Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy , 1998 .

[56]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[57]  F. Smole,et al.  Examination of blocking current-voltage behaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell , 1997 .

[58]  R. Klenk,et al.  Defects in Cu(In, Ga) Se2 semiconductors and their role in the device performance of thin‐film solar cells , 1997 .

[59]  N. Kohara,et al.  Chemical and Structural Characterization of Cu(In,Ga)Se2/Mo Interface in Cu(In,Ga)Se2 Solar Cells , 1996 .

[60]  D. Schmid,et al.  Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 , 1993 .

[61]  W. A. Miller,et al.  Current transport in boeing (Cd, Zn)/CuInSe2solar cells , 1984, IEEE Transactions on Electron Devices.

[62]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[63]  A. Yamada,et al.  Dependence of Se beam pressure on defect states in CIGS-based solar cells , 2011 .

[64]  J. Sites,et al.  Explanation of Light/Dark Superposition Failure in CIGS Solar Cells , 2003 .

[65]  Uwe Rau,et al.  Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis , 2000 .

[66]  S. Nishiwaki,et al.  MoSe 2 layer formation at Cu(In,Ga)Se 2/Mo Interfaces in High Efficiency Cu(In1- xGa x)Se 2 Solar Cells , 1998 .

[67]  S. Damaskinos,et al.  The diode current mechanism in CuInSe/sub 2//(CdZn)S heterojunctions , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.