Hybridized CutFEM for Elliptic Interface Problems

We design and analyze a hybridized cut finite element method for elliptic interface problems. In this method very general meshes can be coupled over internal unfitted interfaces, through a skeletal variable, using a Nitsche type approach. We discuss how optimal error estimates for the method are obtained using the tools of cut finite element methods and prove a condition number estimate for the Schur complement. Finally, we present illustrating numerical examples.

[1]  H. Egger,et al.  hp analysis of a hybrid DG method for Stokes flow , 2013 .

[2]  Alexandre Ern,et al.  Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .

[3]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[4]  Kurt Maute,et al.  CutFEM topology optimization of 3D laminar incompressible flow problems , 2017, ArXiv.

[5]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[6]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[7]  Fumio Kikuchi,et al.  Discontinuous Galerkin FEM of hybrid type , 2010, JSIAM Lett..

[8]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[9]  Mats G. Larson,et al.  Stabilization of high order cut finite element methods on surfaces , 2017, IMA Journal of Numerical Analysis.

[10]  Christoph Lehrenfeld,et al.  Analysis of a high order unfitted finite element method for elliptic interface problems , 2016, 1602.02970.

[11]  Peter Hansbo,et al.  Cut Finite Element Methods for Linear Elasticity Problems , 2017, 1703.04377.

[12]  Norikazu Saito,et al.  Hybridized Discontinuous Galerkin Method for Elliptic Interface Problems: Error Estimates Under Low Regularity Assumptions of Solutions , 2018, J. Sci. Comput..

[13]  H. Egger,et al.  A HYBRID MORTAR METHOD FOR INCOMPRESSIBLE FLOW , 2012 .

[14]  P. Hansbo,et al.  Shape optimization using the cut finite element method , 2016, 1611.05673.

[15]  Peter Hansbo,et al.  A cut finite element method with boundary value correction , 2015, Math. Comput..

[16]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[17]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[18]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[19]  Peter Hansbo,et al.  A Nitsche method for elliptic problems on composite surfaces , 2017, 1705.08384.

[20]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[21]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[22]  Herbert Egger,et al.  A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems , 2010 .

[23]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[24]  Mats G. Larson,et al.  Low Regularity Estimates for CutFEM Approximations of an Elliptic Problem with Mixed Boundary Conditions , 2020, ArXiv.

[25]  Herbert Egger A class of hybrid mortar finite element methods for interface problems with non-matching meshes , 2009 .

[26]  Rolf Stenberg,et al.  Numerical computations with H(div)-finite elements for the Brinkman problem , 2011, Computational Geosciences.

[27]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[28]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[29]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[30]  Peter Hansbo,et al.  Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[31]  Peter Hansbo,et al.  Cut finite elements for convection in fractured domains , 2018, Computers & Fluids.