Inferotemporal Cortex Linearly Additive Shape and Color Signals in Monkey

[1]  Guy A Orban,et al.  Coding of images of materials by macaque inferior temporal cortical neurons , 2008, The European journal of neuroscience.

[2]  C. Olson,et al.  Repetition suppression in monkey inferotemporal cortex: relation to behavioral priming. , 2007, Journal of neurophysiology.

[3]  R. Vogels,et al.  Properties of shape tuning of macaque inferior temporal neurons examined using rapid serial visual presentation. , 2007, Journal of neurophysiology.

[4]  J. Reynolds,et al.  Temporal Resolution for the Perception of Features and Conjunctions , 2007, The Journal of Neuroscience.

[5]  A. Treisman How the deployment of attention determines what we see , 2006, Visual cognition.

[6]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[7]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[8]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[9]  Gyula Kovács,et al.  Achromatic shape processing in the inferotemporal cortex of the macaque , 2005, Neuroreport.

[10]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[11]  A. Christopoulos,et al.  Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting , 2004 .

[12]  D. Perrett,et al.  Color sensitivity of cells responsive to complex stimuli in the temporal cortex. , 2003, Journal of neurophysiology.

[13]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[14]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[15]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[16]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[17]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[18]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[19]  Geoffrey M. Ghose,et al.  Specialized Representations in Visual Cortex A Role for Binding? , 1999, Neuron.

[20]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[21]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[22]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[23]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[24]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[25]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[26]  A. Nagy,et al.  Asymmetries in Simple Feature Searches for Color , 1996, Vision Research.

[27]  K. Tanaka,et al.  Divergent Projections from the Anterior Inferotemporal Area TE to the Perirhinal and Entorhinal Cortices in the Macaque Monkey , 1996, The Journal of Neuroscience.

[28]  A. Treisman The binding problem , 1996, Current Opinion in Neurobiology.

[29]  H. Komatsu,et al.  Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. , 1993, Journal of neurophysiology.

[30]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[31]  J. Duncan,et al.  Beyond the search surface: visual search and attentional engagement. , 1992, Journal of experimental psychology. Human perception and performance.

[32]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[33]  A. Nagy,et al.  Critical color differences determined with a visual search task. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[34]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[35]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[36]  M. Tovée,et al.  The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field , 2004, Experimental Brain Research.

[37]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[38]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.