Weak Convex Decomposition by Lines‐of‐sight

We define the convexity rank of a set of points to be the portion of mutually visible pairs of points out of the total number of pairs. Based on this definition of weak convexity, we introduce a spectral method that decomposes a given shape into weakly convex regions. The decomposition is applied without explicitly measuring the convexity rank. The method merely amounts to a spectral clustering of a matrix representing the all‐pairs line of sight. Our method can be directly applied on an oriented point cloud and does not require any topological information, nor explicit concavity or convexity measures. We demonstrate the efficiency of our algorithm on a large number of examples and compare them qualitatively with competitive approaches.

[1]  Junsong Yuan,et al.  Minimum near-convex decomposition for robust shape representation , 2011, 2011 International Conference on Computer Vision.

[2]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[4]  Daniel Cohen-Or,et al.  Upright orientation of man-made objects , 2008, ACM Trans. Graph..

[5]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[6]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007 .

[7]  Yaron Lipman,et al.  Symmetry factored embedding and distance , 2010, SIGGRAPH 2010.

[8]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[9]  D. Cohen-Or,et al.  Upright orientation of man-made objects , 2008, SIGGRAPH 2008.

[10]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, ACM Trans. Graph..

[11]  Thomas A. Funkhouser,et al.  Randomized cuts for 3D mesh analysis , 2008, SIGGRAPH Asia '08.

[12]  Vladlen Koltun,et al.  Joint shape segmentation with linear programming , 2011, ACM Trans. Graph..

[13]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[14]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[15]  Roman Karasev A Measure of Non-convexity in the Plane and the Minkowski Sum , 2010, Discret. Comput. Geom..

[16]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2007, Symposium on Solid and Physical Modeling.

[17]  Wilmot Li,et al.  Illustrating how mechanical assemblies work , 2010, SIGGRAPH 2010.

[18]  I. Daubechies,et al.  Symmetry factored embedding and distance , 2010, ACM Trans. Graph..

[19]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2004, Symposium on Solid and Physical Modeling.

[20]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2004, SCG '04.

[21]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[22]  Jianfei Cai,et al.  Variational mesh decomposition , 2012, TOGS.

[23]  Marco Attene,et al.  Hierarchical Convex Approximation of 3D Shapes for Fast Region Selection , 2008, Comput. Graph. Forum.

[24]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[25]  D. Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, SIGGRAPH 2009.

[26]  T. Funkhouser,et al.  Randomized cuts for 3D mesh analysis , 2008, SIGGRAPH 2008.

[27]  Wilmot Li,et al.  Illustrating how mechanical assemblies work , 2010, CACM.

[28]  Jun Li,et al.  Symmetry Hierarchy of Man‐Made Objects , 2011, Comput. Graph. Forum.

[29]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2006, Comput. Geom..