On input-to-state stability for time varying nonlinear systems

Input-to-state stability was introduced about 10 years ago. This notion is nowadays a central concept in the analysis of nonlinear systems. However, most theoretical developments dealt mainly with time invariant systems. In this work we study the Lyapunov characterizations of input-to-state stability for time varying nonlinear systems, and in particular, for periodic time varying systems. We also present a small gain theorem for time varying nonlinear systems.

[1]  J. L. Massera Contributions to Stability Theory , 1956 .

[2]  H. Fédérer Geometric Measure Theory , 1969 .

[3]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[4]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Vimal Singh,et al.  Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  A. Isidori Nonlinear Control Systems , 1985 .

[7]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[8]  John Tsinias,et al.  Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..

[9]  L. Praly,et al.  Stabilization by output feedback for systems with ISS inverse dynamics , 1993 .

[10]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[11]  Zhong-Ping Jiang,et al.  Robust control of time-varying nonlinear cascaded systems with dynamic uncertainties , 1995 .

[12]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[13]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[14]  Andrew R. Teel,et al.  Feedback Stabilization of Nonlinear Systems: Sufficient Conditions and Lyapunov and Input-output Techniques , 1995 .

[15]  Y. Wang,et al.  A Lyapunov Formulation of Nonlinear Small Gain Theorem for Interconnected Systems , 1995 .

[16]  Yuandan Lin Input-to-State Stability with Respect to Noncompact Sets 1 , 1996 .

[17]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[18]  Zhong-Ping Jiang,et al.  A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems , 1996, Autom..

[19]  A. Teel,et al.  Singular perturbations and input-to-state stability , 1996, IEEE Trans. Autom. Control..

[20]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[21]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[22]  M. Krstić,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1998, IEEE Trans. Autom. Control..

[23]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[24]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[25]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[26]  Eduardo D. Sontag,et al.  Remarks on input to output stability , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[27]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..

[28]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .