How to divide a territory? A new simple differential formalism for optimization of set functions
暂无分享,去创建一个
[1] R. Fisher. The Advanced Theory of Statistics , 1943, Nature.
[2] A. Rosenthal,et al. What are Set Functions , 1948 .
[3] E. M. Lifshitz,et al. Classical theory of fields , 1952 .
[4] S. Vajda,et al. GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .
[5] E. Hewitt,et al. Theory of functions of a real variable , 1960 .
[6] R. A. Silverman,et al. Integral, Measure and Derivative: A Unified Approach , 1967 .
[7] Charles A. Hayes,et al. Derivation and Martingales , 1970, Ergebnisse der Mathematik und ihrer Grenzgebiete.
[8] R. Leighton,et al. Feynman Lectures on Physics , 1971 .
[9] Curtis F. Gerald,et al. APPLIED NUMERICAL ANALYSIS , 1972, The Mathematical Gazette.
[10] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[11] T. Bukowski,et al. Integral. , 2019, Healthcare protection management.
[12] Bruce L. Golden,et al. Optimisation , 1982, IEEE Trans. Syst. Man Cybern..
[13] Kensuke Tanaka,et al. The Multiobjective Optimization Problem of Set Function , 1984 .
[14] J. Hartigan. Estimation of a Convex Density Contour in Two Dimensions , 1987 .
[15] Michael Gelfond,et al. Theory of deductive systems and its applications , 1987 .
[16] M. Delfour,et al. Shape sensitivity analysis via a penalization method , 1988 .
[17] D. Nolan. The excess-mass ellipsoid , 1991 .
[18] S. Vavasis. Nonlinear optimization: complexity issues , 1991 .
[19] G. Sawitzki,et al. Using excess mass estimates to investigate the modality of a distribution , 1991 .
[20] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[21] P. Pardalos. Complexity in numerical optimization , 1993 .
[22] L. Doyen. Filippov and invariance theorems for mutational inclusions of tubes , 1993 .
[23] Juliette Mattioli,et al. Differential inclusions for mathematical morphology , 1993, Optics & Photonics.
[24] M. Delfour,et al. Shape Analysis via Oriented Distance Functions , 1994 .
[25] L. Doyen. Inverse Function Theorems and Shape Optimization , 1994 .
[26] W. Polonik. Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .
[27] J. Mattioli. Minkowski operations and vector spaces , 1995 .
[28] Michel C. Delfour,et al. A Boundary Differential Equation for Thin Shells , 1995 .
[29] George J. Klir,et al. Fuzzy sets and fuzzy logic - theory and applications , 1995 .
[30] Hung T. Nguyen,et al. A First Course in Fuzzy Logic , 1996 .
[31] Vladik Kreinovich,et al. Astrogeometry, error estimation, and other applications of set-valued analysis , 1996, SGNM.
[32] M. Delfour,et al. Tangential Differential Equations for Dynamical Thin/Shallow Shells , 1996 .
[33] V. Kreinovich,et al. Problems of reducing the exhaustive search , 1996 .
[34] Vladik Kreinovich,et al. Astrogeometry: Towards Mathematical Foundations , 1996 .
[35] andVladik Kreinovichc. Astrogeometry: Geometry Explains Shapes of Celestial Bodies 1. Our Main Idea: Astroshapes as Geometric Objects 1.1. Physical Background , 1996 .
[36] J. M. Gutiérrez,et al. NON-EQUILIBRIUM THERMODYNAMICS EXPLAINS SEMIOTIC SHAPES : APPLICATIONS TO ASTRONOMY AND TO NON-DESTRUCTIVE TESTING OF AEROSPACE SYSTEMS , 1997 .
[37] V. Kreinovich. Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .
[38] Vladik Kreinovich,et al. Computational Geometry and Artificial Neural Networks: A Hybrid Approach to Optimal Sensor Placement for Aerospace NDE , 1997 .
[39] Olaf Wolkenhauer,et al. Random-sets: theory and applications , 2001 .