Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues.

[1]  C. Etchebest,et al.  Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. , 2013, Biophysical journal.

[2]  J Andrew McCammon,et al.  Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers. , 2012, Biochimica et biophysica acta.

[3]  O. Shupliakov,et al.  Synapsin I Senses Membrane Curvature by an Amphipathic Lipid Packing Sensor Motif , 2011, The Journal of Neuroscience.

[4]  C. Etchebest,et al.  Amphipathic-Lipid-Packing-Sensor interactions with lipids assessed by atomistic molecular dynamics. , 2011, Biochimica et biophysica acta.

[5]  B. Antonny,et al.  α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding , 2011, The Journal of cell biology.

[6]  Bruno Antonny,et al.  Mechanisms of membrane curvature sensing. , 2011, Annual review of biochemistry.

[7]  Q. Zhong,et al.  Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L) , 2011, Proceedings of the National Academy of Sciences.

[8]  T. Baumgart,et al.  Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. , 2011, Annual review of physical chemistry.

[9]  G. Voth,et al.  Mechanism of membrane curvature sensing by amphipathic helix containing proteins. , 2011, Biophysical journal.

[10]  H. Steinhoff,et al.  Phosphorylation of a membrane curvature–sensing motif switches function of the HOPS subunit Vps41 in membrane tethering , 2010, The Journal of cell biology.

[11]  Logan S. Ahlstrom,et al.  The N-terminus of the intrinsically disordered protein α-synuclein triggers membrane binding and helix folding. , 2010, Biophysical journal.

[12]  M. Hetzer,et al.  Cell Cycle-Dependent Differences in Nuclear Pore Complex Assembly in Metazoa , 2010, Cell.

[13]  N. Hatzakis,et al.  A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. , 2010, Seminars in cell & developmental biology.

[14]  M. Sansom,et al.  Studies on viral fusion peptides: the distribution of lipophilic and electrostatic potential over the peptide determines the angle of insertion into a membrane , 2010, European Biophysics Journal.

[15]  R. Losick,et al.  Protein subcellular localization in bacteria. , 2010, Cold Spring Harbor perspectives in biology.

[16]  Jeremy C. Smith,et al.  Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides. , 2010, Journal of the American Chemical Society.

[17]  E. Pai,et al.  An iris-like mechanism of pore dilation in the CorA magnesium transport system. , 2010, Biophysical journal.

[18]  P. Bassereau,et al.  Membrane curvature controls dynamin polymerization , 2010, Proceedings of the National Academy of Sciences.

[19]  Klaus Schulten,et al.  Membrane-bending mechanism of amphiphysin N-BAR domains. , 2009, Biophysical journal.

[20]  Gregory A Voth,et al.  Membrane binding by the endophilin N-BAR domain. , 2009, Biophysical journal.

[21]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[22]  Bruno Antonny,et al.  Asymmetric Tethering of Flat and Curved Lipid Membranes by a Golgin , 2008, Science.

[23]  W F Drew Bennett,et al.  Distribution of amino acids in a lipid bilayer from computer simulations. , 2008, Biophysical journal.

[24]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[25]  W. DeGrado,et al.  Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers. , 2007, Biochemistry.

[26]  G. Drin,et al.  Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature. , 2007, Biochemistry.

[27]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[28]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[29]  Christian Kandt,et al.  Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[31]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[32]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[33]  Bruno Antonny,et al.  Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature , 2003, Nature.

[34]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[35]  S H White,et al.  Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. , 1999, Journal of molecular biology.

[36]  S H White,et al.  Hydrophobic interactions of peptides with membrane interfaces. , 1998, Biochimica et biophysica acta.

[37]  B. Antonny,et al.  Activation of ADP-ribosylation Factor 1 GTPase-Activating Protein by Phosphatidylcholine-derived Diacylglycerols* , 1997, The Journal of Biological Chemistry.

[38]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[39]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[40]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[41]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[42]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[43]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[44]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[45]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[46]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[47]  W. Delano The PyMOL Molecular Graphics System , 2002 .