The magnetic and neutron diffraction studies of La{sub 1−x}Sr{sub x}MnO{sub 3} nanoparticles prepared via molten salt synthesis

[1]  L. Dubrovinsky,et al.  Pressure-induced structural transformations, orbital order and antiferromagnetism in La0.75Ca0.25MnO3 , 2013, The European Physical Journal B.

[2]  G. Goglio,et al.  Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites , 2013 .

[3]  Yuanbing Mao,et al.  Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles. , 2013, Nanoscale.

[4]  X. Batlle Recent advances in magnetic nanoparticles with bulk-like properties , 2013 .

[5]  M. Ma̧czka,et al.  Optical properties of Eu and Er doped LaAlO3 nanopowders prepared by low-temperature method , 2012 .

[6]  A. Mediano,et al.  New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. , 2012, Nanoscale.

[7]  S. Pennycook,et al.  Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. , 2012, Nano letters.

[8]  V. Šepelák,et al.  The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles , 2011 .

[9]  C. Serna,et al.  Magnetic nanoparticles with bulklike properties (invited) , 2010, 1011.2573.

[10]  D. Jirák,et al.  Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles , 2011 .

[11]  Yuanming Zhang,et al.  Synthesis of LaMO3 (M = Fe, Co, Ni) using nitrate or nitrite molten salts , 2010 .

[12]  G. Goglio,et al.  Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating , 2009, Nanotechnology.

[13]  Hyoyeol Park,et al.  A sonochemical-assisted synthesis and annealing temperature effect of La0.7Sr0.3MnO3 nanoparticles , 2009 .

[14]  L. Dubrovinsky,et al.  Pressure-induced antiferromagnetism and compression anisotropy in Pr0.52Sr0.48MnO3 , 2007 .

[15]  K. Knížek,et al.  New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia , 2007 .

[16]  P. Marote,et al.  Lanthanum-based perovskites obtained in molten nitrates or nitrites , 2007 .

[17]  P. Dey,et al.  Effect of grain size modulation on the magneto- and electronic-transport properties ofLa0.7Ca0.3MnO3nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface , 2006 .

[18]  D. Balzar,et al.  Size–strain line-broadening analysis of the ceria round-robin sample , 2004 .

[19]  B. Dabrowski,et al.  Structural and magnetic phase diagrams of La 1-x Sr x MnO 3 and Pr 1-y Sr y MnO 3 , 2003 .

[20]  Chunhua Yan,et al.  Molten alkali metal nitrate flux to well-crystallized and homogeneous La0.7Sr0.3MnO3 nanocrystallites , 2003 .

[21]  J. Rivas,et al.  Intergranular magnetoresistance in nanomanganites , 2003 .

[22]  F. J. Gracia,et al.  Room temperature colossal magnetoresistance in nanocrystalline La0.67Sr0.33MnO3 sputtered thin films , 2000 .

[23]  B. Dabrowski,et al.  Structure-properties phase diagram for La1-xSrxMnO3 (0.1<=x<=0.2) , 1999 .

[24]  S. Bader,et al.  Structural phase diagram of La1-xSrxMnO3+ delta : Relationship to magnetic and transport properties. , 1996, Physical review. B, Condensed matter.