Silicon carbide and diamond for high temperature device applications

The physical and chemical properties of wide bandgap semiconductors silicon carbide and diamond make these materials an ideal choice for device fabrication for applications in many different areas, e.g. light emitters, high temperature and high power electronics, high power microwave devices, micro-electromechanical system (MEMS) technology, and substrates. These semiconductors have been recognized for several decades as being suitable for these applications, but until recently the low material quality has not allowed the fabrication of high quality devices. Silicon carbide and diamond based electronics are at different stages of their development. An overview of the status of silicon carbide's and diamond's application for high temperature electronics is presented.Silicon carbide electronics is advancing from the research stage to commercial production. The most suitable and established SiC polytype for high temperature power electronics is the hexagonal 4H polytype. The main advantages related to material properties are: its wide bandgap, high electric field strength and high thermal conductivity. Almost all different types of electronic devices have been successfully fabricated and characterized. The most promising devices for high temperature applications are pn-diodes, junction field effect transistors and thyristors. MOSFET is another important candidate, but is still under development due to some hidden problems causing low channel mobility. For microwave applications, 4H-SiC is competing with Si and GaAs for frequency below 10 GHz and for systems requiring cooling like power amplifiers. The unavailability of high quality defect and dislocation free SiC substrates has been slowing down the pace of transition from research and development to production of SiC devices, but recently new method for growth of ultrahigh quality SiC, which could promote the development of high power devices, was reported.Diamond is the superior material for high power and high temperature electronics. Fabrication of diamond electronic devices has reached important results, but high temperature data are still scarce. PN-junctions have been formed and investigated up to 400 ∘C. Schottky diodes operating up to 1000 ∘C have been fabricated. BJTs have been fabricated functioning in the dc mode up to 200 ∘C. The largest advance, concerning development of devices for RF application, has been done in fabrication of different types of FETs. For FETs with gate length 0.2 μ m frequencies fT = 24.6 GHz, fmax (MAG) = 63 GHz and fmax (U) = 80 GHz were reported. Further, capacitors and switches, working up to 450 ∘C and 650 ∘C, respectively, have also been fabricated. Low resistant thermostable resistors have been investigated up to 800 ∘C. Temperature dependence of field emission from diamond films has been measured up to 950 ∘C. However, the diamond based electronics is still regarded to be in its infancy. The prerequisite for a successful application of diamond for the fabrication of electronic devices is availability of wafer diamond, i.e. large area, high quality, inexpensive, diamond single crystal substrates. A step forward in this direction has been made recently. Diamond films grown on multilayer substrate Ir/YSZ/Si(001) having qualities close those of homoepitaxial diamond have been reported recently.

[1]  A. Vescan,et al.  Diamond diodes and transistors , 2003 .

[2]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[3]  E. Kohn,et al.  Prospects of bipolar diamond devices , 2000 .

[4]  Christoph Wild,et al.  Low-Pressure Synthetic Diamond , 1998 .

[5]  N. M. Miskovsky,et al.  The use of internal field emission to inject electronic charge carriers into the conduction band of diamond films : a review , 1999 .

[6]  D. Twitchen,et al.  Thermal conductivity measurements on CVD diamond , 2001 .

[7]  A. Aleksov,et al.  Diamond field effect transistors—concepts and challenges , 2003 .

[8]  E. Kohn,et al.  RF performance of surface channel diamond FETs with sub-micron gate length , 2002 .

[9]  O. Williams,et al.  High growth rate MWPECVD of single crystal diamond , 2004 .

[10]  Matthias Schreck,et al.  A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers , 2004 .

[11]  E. Kohn,et al.  Diamond MEMS — a new emerging technology , 1999 .

[12]  Denis Flandre,et al.  Fully depleted SOI-CMOS technology for high temperature IC applications , 1997 .

[13]  Q. Sun,et al.  Relative oxidation behavior of chemical vapor deposited and type IIa natural diamonds , 1992 .

[14]  F. S. Shoucair,et al.  6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25–500°C) , 1996 .

[15]  J. Field The Properties of natural and synthetic diamond , 1992 .

[16]  Mikael Östling,et al.  Junction Barrier Schottky Diodes in 4H-SiC and 6H-SiC , 1997 .

[17]  M. Melloch,et al.  A dual-metal-trench Schottky pinch-rectifier in 4H-SiC , 1998, IEEE Electron Device Letters.

[18]  E. A. Konorova,et al.  Diamond dosimeter for x-ray and δ-radiation , 1977, IEEE Transactions on Nuclear Science.

[19]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[20]  E. Kohn,et al.  High-temperature diamond capacitor , 1999 .

[21]  J Walker,et al.  Optical absorption and luminescence in diamond , 1979 .

[22]  Emission properties of Spindt-type cold cathodes with different emission cone material , 1991 .

[23]  H. Okushi High quality homoepitaxial CVD diamond for electronic devices , 2001 .

[24]  Zhili Sun,et al.  Annealing effect on electron field-emission properties of diamond-like nanocomposite films , 2000 .

[25]  S. Matsumoto,et al.  Diamond synthesis from gas phase in microwave plasma , 1983 .

[26]  D. Fleetwood,et al.  An overview of high-temperature electronic device technologies and potential applications , 1994 .

[27]  H. Zirath,et al.  High field effect mobility in Si face 4H-SiC MOSFET transistors , 2004 .

[28]  Christian Brylinski,et al.  Trap-free process and thermal limitations on large-periphery SiC MESFET for RF and microwave power , 2003 .

[29]  L. Ley,et al.  Diamond surface conductivity experiments and photoelectron spectroscopy , 2001 .

[30]  R. Sauer,et al.  Analysis of piezoresistive properties of CVD-diamond films on silicon , 2001 .

[31]  R. Singh,et al.  1800 V NPN bipolar junction transistors in 4H-SiC , 2001, IEEE Electron Device Letters.

[32]  K. V. Ravi,et al.  Hydrogen passivation of electrically active defects in diamond , 1989 .

[33]  W. Kang,et al.  Diamond field emission devices , 2003 .

[34]  John W. Palmour,et al.  7.4 kV, 330 A (pulsed), single chip, high temperature 4H-SiC pin rectifier , 2002 .

[35]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[36]  C. Jia,et al.  Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001) , 1998 .

[37]  H. Ólafsson,et al.  Enhancement of Inversion Channel Mobility in 4H-SiC MOSFETs using a Gate Oxide Grown in Nitrous Oxide (N2O) , 2004 .

[38]  M. Amann,et al.  Fabrication of in-plane gate transistors on hydrogenated diamond surfaces , 2003 .

[39]  A. Vescan,et al.  High-temperature, high-voltage operation of pulse-doped diamond MESFET , 1997, IEEE Electron Device Letters.

[40]  A. Vescan,et al.  Diamond junction FETs based on δ-doped channels , 1999 .

[41]  R. Raghunathan,et al.  P-type 4H and 6H-SiC high-voltage Schottky barrier diodes , 1998, IEEE Electron Device Letters.

[42]  W. V. Enckevort,et al.  Oxidative etching of diamond , 2000 .

[43]  S. Nogita,et al.  Synthesis of diamond by decomposition of methane in microwave plasma , 1986 .

[44]  J. Robertson Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon , 1999 .

[45]  T. Tachibana,et al.  Heteroepitaxial diamond growth on platinum(111) by the Shintani process , 1996 .

[46]  J. Field The Properties of Diamond , 1979 .

[47]  H. Okushi,et al.  Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films , 1997 .

[48]  Andrei Vescan,et al.  δ-Doping in diamond , 1999 .

[49]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[50]  B. Derjaguin,et al.  Vapor growth of diamond on diamond and other surfaces , 1981 .

[51]  P. Koidl,et al.  Oriented CVD diamond films: twin formation, structure and morphology , 1994 .

[52]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[53]  E. Kohn,et al.  Very high temperature operation of diamond Schottky diode , 1997, IEEE Electron Device Letters.

[54]  Toshiki Tsubota,et al.  Heteroepitaxial growth of diamond on an iridium (100) substrate using microwave plasma-assisted chemical vapor deposition , 2000 .

[55]  J. Russ,et al.  CVD diamond sensors for charged particle detection , 2001 .

[56]  A. Powell,et al.  Development of Large Diameter High-Purity Semi-Insulating 4H-SiC Wafers for Microwave Devices , 2004 .

[57]  H. Kawarada,et al.  High-preformance diamond surface-channel field-effect transistors and their operation mechanism , 1999 .

[58]  Yoshiyuki Sakaguchi,et al.  Hydrogenating Effect of Single-Crystal Diamond Surface , 1992 .

[59]  Naoki Kobayashi,et al.  Influence of epitaxy on the surface conduction of diamond film , 2004 .

[60]  A. Aleksov,et al.  Diamond surface-channel FET structure with 200 V breakdown voltage , 1997, IEEE Electron Device Letters.

[61]  A. Powell,et al.  Silicon Carbide Crystal and Substrate Technology: A Survey of Recent Advances , 2004 .

[62]  B. Golding,et al.  Studies of heteroepitaxial growth of diamond , 2003 .

[63]  H. Baik,et al.  Field emission property of chemical vapor deposited diamond overlayer films , 2002 .

[64]  D. Malta,et al.  Electrical Properties of Diamond for Device Applications , 1995 .

[65]  R. Roy,et al.  Survival of diamond at 2200 °C in hydrogen , 1996 .

[66]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  R. Joshi,et al.  Effects of barrier height fluctuations and electron tunneling on the reverse characteristics of 6H–SiC Schottky contacts , 1999 .

[68]  R. Nemanich,et al.  Schottky barrier height and negative electron affinity of titanium on (111) diamond , 1992 .

[69]  Robert Nemanich,et al.  Enhanced low-temperature thermionic field emission from surface-treated N-doped diamond films , 2002 .

[70]  Allen R. Hefner,et al.  Large area, ultra-high voltage 4H-SiC p-i-n rectifiers , 2002 .

[71]  M. Geis,et al.  Summary Abstract: Device applications of diamonds , 1988 .

[72]  H. Kawarada,et al.  DC and RF characteristics of 0.7-μm-gate-length diamond metal–insulator–semiconductor field effect transistor , 2002 .

[73]  Jan Isberg,et al.  Single crystal diamond for electronic applications , 2003 .

[74]  D. G. Walker,et al.  Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes , 2002 .

[75]  B. J. Baliga,et al.  The pinch rectifier: A low-forward-drop high-speed power diode , 1984, IEEE Electron Device Letters.

[76]  Hiroshi Kawarada,et al.  Hydrogen-terminated diamond surfaces and interfaces , 1996 .

[77]  H. Kanda,et al.  Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition , 2004 .

[78]  V. Tsvetkov,et al.  Investigation of growth processes of ingots of silicon carbide single crystals , 1978 .

[79]  W. Fahrner Handbook of Diamond Technology , 2000 .

[80]  J. Scofield,et al.  Thermally stable ohmic contacts to 6H- and 4H- p-type SiC , 1998, 1998 Fourth International High Temperature Electronics Conference. HITEC (Cat. No.98EX145).

[81]  Chang Q. Sun,et al.  Preferential oxidation of diamond {111} , 2000 .

[82]  Bodgan M. Wilamowski,et al.  Schottky diodes with high breakdown voltages , 1983 .

[83]  Wayne A. Weimer,et al.  Thermogravimetric analysis of the oxidation of CVD diamond films , 1990 .

[84]  J. C. Zolper,et al.  A review of junction field effect transistors for high-temperature and high-power electronics , 1998 .

[85]  C. Zetterling,et al.  Junction barrier Schottky diodes in 6H SiC , 1998 .

[86]  N. Xu,et al.  Graphitization of nanodiamond powder annealed in argon ambient , 1999 .

[87]  Reinhard Zachai,et al.  The nucleation and growth of large area, highly oriented diamond films on silicon substrates , 1998 .

[88]  P. Morfouli,et al.  High temperature silicon carbide MOSFETs with very low drain leakage current , 1994 .

[89]  A. Vescan,et al.  High temperature, high voltage operation of diamond Schottky diode , 1998 .

[90]  M. Seelmann-Eggebert,et al.  Heat-spreading diamond films for GaN-based high-power transistor devices , 2001 .

[91]  B. Golding,et al.  Heteroepitaxial diamond film growth: the a-plane sapphire-iridium system , 2004 .

[92]  H. Okushi,et al.  High-Quality B-Doped Homoepitaxial Diamond Films using Trimethylboron , 1998 .

[93]  Mikael Östling,et al.  A JBS Diode with Controlled Forward Temperature Coefficient and Surge Current Capability , 2002 .

[94]  A. Mainwood,et al.  Recent developments of diamond detectors for particles and UV radiation , 2000 .

[95]  E. van Veenendaal,et al.  Oxidative etching of cleaved synthetic diamond {111} surfaces , 2001 .

[96]  L. Ley,et al.  Surface Electronic Properties of Diamond , 2000 .

[97]  D. Kania,et al.  Diamond : electronic properties and applications , 1995 .

[98]  G. C. Chen,et al.  Oxidation behaviour of high quality freestanding diamond films by high power arcjet operating at gas recycling mode , 2004 .

[99]  D. G. Walker,et al.  High-Temperature Electron Emission From Diamond Films , 2001, Heat Transfer: Volume 4 — Combustion and Energy Systems.

[100]  J. Cooper Opportunities and Technical Strategies for Silicon Carbide Device Development , 2002 .

[101]  Tadashi Ito,et al.  Ultrahigh-quality silicon carbide single crystals , 2004, Nature.

[102]  27 m/spl Omega/-cm/sup 2/, 1.6 kV power DiMOSFETs in 4H-SiC , 2002, Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics.

[103]  Robert J. Trew,et al.  SiC and GaN transistors - is there one winner for microwave power applications? , 2002, Proc. IEEE.

[104]  Kazuhiro Suzuki,et al.  Epitaxial Growth of Diamond on Iridium , 1996 .

[105]  J. Glass,et al.  Textured diamond growth on (100) β‐SiC via microwave plasma chemical vapor deposition , 1992 .

[106]  Kazuhiro Suzuki,et al.  Passivation of hydrogen terminated diamond surface conductive layer using hydrogenated amorphous carbon , 2004 .

[107]  A. Aleksov,et al.  pH sensing by surface-doped diamond and effect of the diamond surface termination , 2001 .

[108]  Kenji Watanabe,et al.  Formation of diamond p–n junction and its optical emission characteristics , 2002 .

[109]  W. Hsu,et al.  Role of microstructure on the oxidation behavior of microwave plasma synthesized diamond and diamond-like carbon films , 1990 .

[110]  Kazuhiro Suzuki,et al.  Epitaxial growth of diamond thin films on cubic boron nitride {111} surfaces by dc plasma chemical vapor deposition , 1990 .

[111]  Jonathan A. Cooper,et al.  2.6 kV 4H-SiC lateral DMOSFETs , 1998, IEEE Electron Device Letters.

[112]  Hans L. Hartnagel,et al.  High temperature electronics , 1996 .

[113]  J. Prins Using ion implantation to dope diamond — an update on selected issues , 2001 .

[114]  A. Vescan,et al.  The nucleation of highly oriented diamond on silicon via an alternating current substrate bias , 1996 .

[115]  P. Koidl,et al.  Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide , 1997 .

[116]  L. Ley,et al.  Role of hydrogen on field emission from chemical vapor deposited diamond and nanocrystalline diamond powder , 2000 .

[117]  Rafi Kalish,et al.  The search for donors in diamond , 2001 .

[118]  J. Glass,et al.  Textured growth of diamond on silicon via in situ carburization and bias‐enhanced nucleation , 1993 .

[119]  M. Schreck,et al.  Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: Experimental results and numerical simulations , 2002 .

[120]  A. Agarwal,et al.  Power amplification in UHF band using SiC RF power BJTs , 2002, Proceedings. IEEE Lester Eastman Conference on High Performance Devices.

[121]  H. Tomokage,et al.  Spatial variation of field emission current on nitrogen-doped diamond-like carbon surfaces by scanning probe method , 2001 .

[122]  A. Agarwal,et al.  SiC power-switching devices-the second electronics revolution? , 2002, Proc. IEEE.

[123]  M. Melloch,et al.  SiC power Schottky and PiN diodes , 2002 .

[124]  High-voltage UMOSFETs in 4H SiC , 2002, Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics.

[125]  M. Schreck,et al.  Diamond-based electronics for RF applications , 2004 .

[126]  B. Jayant Baliga,et al.  High temperature operation of SiC planar ACCUFET , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[127]  M. H. Nazaré,et al.  Properties, Growth and Applications of Diamond , 2000 .

[128]  H. Taniuchi,et al.  High-frequency performance of diamond field-effect transistor , 2001, IEEE Electron Device Letters.

[129]  T. Chow,et al.  Silicon carbide benefits and advantages for power electronics circuits and systems , 2002, Proc. IEEE.

[130]  M. Stutzmann,et al.  n-Type doping of diamond by sulfur and phosphorus , 2002 .

[131]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[132]  M. Imaizumi,et al.  Electrical Characterization of Au/p-ZnSe Structure , 1996 .

[133]  Jan Abraham Ferreira,et al.  High temperature, high power density packaging for automotive applications , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[134]  Richard B. Jackman,et al.  Diamond photoconductors: operational lifetime and radiation hardness under deep-UV excimer laser irradiation , 2001 .

[135]  J. Gondek,et al.  New hybrid with Q-factor-pass-band microwave filter constructed with di-electric resonators and coupled with a thick-film microstrip line made in diamond substrates , 2001 .

[136]  H. Lendenmann,et al.  Crystal Defects as Source of Anomalous Forward Voltage Increase of 4H-SiC Diodes , 2001 .

[137]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[138]  S. Cristoloveanu SOI: a metamorphosis of silicon , 1999 .

[139]  M. Schreck,et al.  Lithium addition during CVD diamond growth: influence on the optical emission of the plasma and properties of the films , 2000 .

[140]  Koji Kajimura,et al.  Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements , 1996 .

[141]  L. Ley,et al.  The correlation between surface conductivity and adsorbate coverage on diamond as studied by infrared spectroscopy , 2001 .

[142]  J. Sumakeris,et al.  Large Diameter 4H-SiC Substrates for Commercial Power Applications , 2004 .

[143]  P. Neudeck,et al.  Performance limiting micropipe defects in silicon carbide wafers , 1994, IEEE Electron Device Letters.

[144]  Dean Malta,et al.  Diamond devices and electrical properties , 1995 .

[145]  M. Schreck,et al.  Field effect transistor fabricated on hydrogen-terminated diamond grown on SrTiO3 substrate and iridium buffer layer , 2003 .

[146]  T. Borst,et al.  Electrical characterization of homoepitaxial diamond films doped with B, P, Li and Na during crystal growth , 1995 .

[147]  Robert J. Trew,et al.  The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications , 1991, Proc. IEEE.

[148]  Xin Jiang,et al.  Epitaxial diamond thin films on (001) silicon substrates , 1993 .

[149]  E. Janzén,et al.  Structural macro-defects in 6H-SiC wafers , 1993 .

[150]  M. Schreck,et al.  Diamond/Ir/SrTiO3: A material combination for improved heteroepitaxial diamond films , 1999 .

[151]  Takeshi Kobayashi,et al.  Fermi Level Pinning in Metal-Insulator-Diamond Structures , 1995 .

[152]  Adrian Powell,et al.  SiC materials-progress, status, and potential roadblocks , 2002, Proc. IEEE.

[153]  R. Jackman,et al.  Fabrication of aluminium nitride diamond and gallium nitride diamond SAW devices , 1999 .

[154]  G. R. Fisher,et al.  Towards a unified view of polytypism in silicon carbide , 1990 .

[155]  P. Schmid,et al.  Diamond electro-mechanical micro devices — technology and performance , 2001 .