A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2

This paper presents a comparative study of the lattice dynamics of three-dimensional layered MoS2 and two-dimensional single layer MoS2 based on the density functional theory. A comprehensive analysis of energetics and optimized structure parameters is performed using different methods. It is found that the van der Waals attraction between layers of three-dimensional (3D) layered MoS2 is weak but is essential to hold the layers together with the equilibrium interlayer spacing. Cohesive energy, phonon dispersion curves, and corresponding density of states and related properties, such as Born-effective charges, dielectric constants, Raman and infrared active modes are calculated for 3D layered as well as 2D single layer MoS2 using their optimized structures. These calculated values are compared with the experimental data to reveal interesting dimensionality effects. The absence of a weak interlayer interaction in 2D single layer MoS2 results in the softening of some of Raman active modes.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[3]  E. Akturk,et al.  Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects , 2010, 1009.5488.

[4]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[5]  T. Livneh,et al.  Resonant Raman scattering at exciton states tuned by pressure and temperature in 2 H -MoS 2 , 2010 .

[6]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[7]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[8]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[9]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[10]  M. Terrones,et al.  Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons , 2009, Nanotechnology.

[11]  J. Musfeldt,et al.  Dynamical charge and structural strain in inorganic fullerenelike MoS2 nanoparticles , 2009 .

[12]  J. Nørskov,et al.  Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2). , 2009, The Journal of chemical physics.

[13]  M. Huang,et al.  Density Functional Theory Study of CO Hydrogenation on a MoS2 Surface , 2009 .

[14]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[15]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[16]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[17]  C. Colliex,et al.  Ab initio study of bilateral doping within the MoS2-NbS2 system , 2008, 0806.1411.

[18]  J. Nørskov,et al.  Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts , 2007 .

[19]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[20]  Jens K. Nørskov,et al.  The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study , 2007 .

[21]  J. Maultzsch,et al.  Elasticity of single-crystalline graphite: Inelastic x-ray scattering study , 2007 .

[22]  R. Prins,et al.  A density functional theory study of the hydrogenolysis and elimination reactions of C2H5SH on the catalytically active (100) edge of 2H MoS2 , 2007 .

[23]  F. Besenbacher,et al.  Size-dependent structure of MoS2 nanocrystals. , 2007, Nature nanotechnology.

[24]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[25]  K. M. Liew,et al.  Equilibrium configuration and continuum elastic properties of finite sized graphene , 2006 .

[26]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[27]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Adjaye,et al.  On the incorporation of nickel and cobalt into MoS2-edge structures , 2004 .

[29]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[30]  Karsten Wedel Jacobsen,et al.  Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts , 2004 .

[31]  A. Saúl,et al.  Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. , 2004, Physical review letters.

[32]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[33]  Miroslav Hodak,et al.  Van der Waals binding energies in graphitic structures , 2002 .

[34]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[35]  J. Nørskov,et al.  One-dimensional metallic edge states in MoS2. , 2001, Physical review letters.

[36]  P. Krüger,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001, cond-mat/0107541.

[37]  I. Stensgaard,et al.  Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts , 2001 .

[38]  Seifert,et al.  Structure and electronic properties of MoS2 nanotubes , 2000, Physical review letters.

[39]  Á. Rubio,et al.  Density functional study of adsorption of molecular hydrogen on graphene layers , 2000, physics/0002015.

[40]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.

[41]  G. Kresse,et al.  Ab initio study of the H2-H2S/MoS2 gas-solid interface : The nature of the catalytically active sites , 2000 .

[42]  G. Frey,et al.  Raman and resonance Raman investigation of MoS 2 nanoparticles , 1999 .

[43]  J. Wilcoxon,et al.  Applications of metal and semiconductor nanoclusters as thermal and photo-catalysts , 1999 .

[44]  Sidney R. Cohen,et al.  Hollow nanoparticles of WS2 as potential solid-state lubricants , 1997, Nature.

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  M. Freund,et al.  Surface Structure of Single-Crystal MoS2(0002) and Cs/MoS2(0002) by X-ray Photoelectron Diffraction , 1996 .

[47]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[48]  Kobayashi,et al.  Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. , 1995, Physical review. B, Condensed matter.

[49]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[50]  Bertrand Surface-phonon dispersion of MoS2. , 1991, Physical review. B, Condensed matter.

[51]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[52]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[53]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[54]  Zhao,et al.  X-ray diffraction data for graphite to 20 GPa. , 1989, Physical review. B, Condensed matter.

[55]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[56]  E. D. Crozier,et al.  A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy , 1987 .

[57]  Wold,et al.  Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. , 1987, Physical review. B, Condensed matter.

[58]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[59]  B. Parkinson,et al.  Further studies of the photoelectrochemical properties of the group VI transition metal dichalcogenides , 1982 .

[60]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[61]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[62]  J. Phillips,et al.  Calculated specific surface energy of molybdenite ( MoS 2 ) , 1976 .

[63]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[64]  P. Trucano,et al.  Structure of graphite by neutron diffraction , 1975, Nature.

[65]  H. G. Smith,et al.  Lattice dynamics of hexagonal Mo S 2 studied by neutron scattering , 1975 .

[66]  C. S. Wang,et al.  Second order Raman spectrum of MoS2 , 1974 .

[67]  R. S. Title,et al.  Electron-Paramagnetic-Resonance Studies on Arsenic Acceptors in Natural (2H) and Synthetic (3R) MoS 2 Crystals , 1973 .

[68]  R. V. Kasowski Band Structure of Mo S 2 and Nb S 2 , 1973 .

[69]  L. Mattheiss Energy Bands for 2H-NbSe2 and 2H-MoS2 , 1973 .

[70]  T. Wieting,et al.  Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2 , 1971 .

[71]  T. Wieting,et al.  Lattice Mode Degeneracy in Mo S 2 and Other Layer Compounds , 1970 .

[72]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .

[73]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[74]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.