Isotropic measures and stronger forms of the reverse isoperimetric inequality
暂无分享,去创建一个
[1] K. Böröczky,et al. Affine images of isotropic measures , 2015 .
[2] M. Henk,et al. Cone-volume measure and stability , 2014, 1407.7272.
[3] Silouanos Brazitikos. Geometry of Isotropic Convex Bodies , 2014 .
[4] F. Barthe,et al. Invariances in variance estimates , 2011, 1106.5985.
[5] Bo'az Klartag,et al. Centroid Bodies and the Logarithmic Laplace Transform - A Unified Approach , 2011, 1103.2985.
[6] L. Duembgen. Bounding Standard Gaussian Tail Probabilities , 2010, 1012.2063.
[7] O. Guédon,et al. Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.
[8] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[9] A. Figalli,et al. A refined Brunn-Minkowski inequality for convex sets , 2009 .
[10] M. Ledoux,et al. Correlation and Brascamp–Lieb Inequalities for Markov Semigroups , 2009, 0907.2858.
[11] N. Fusco,et al. The sharp quantitative isoperimetric inequality , 2008 .
[12] B. Klartag. On nearly radial marginals of high-dimensional probability measures , 2008, 0810.4700.
[13] E. Carlen,et al. Subadditivity of The Entropy and its Relation to Brascamp–Lieb Type Inequalities , 2007, 0710.0870.
[14] B. Klartag,et al. A Berry-Esseen type inequality for convex bodies with an unconditional basis , 2007, 0705.0832.
[15] E. Lutwak,et al. Volume inequalities for isotropic measures , 2006, math/0607753.
[16] Franz E Schuster,et al. An arithmetic proof of John’s ellipsoid theorem , 2005, 1207.7246.
[17] T. Tao,et al. The Brascamp–Lieb Inequalities: Finiteness, Structure and Extremals , 2005, math/0505065.
[18] E. Lutwak,et al. Volume Inequalities for Subspaces of L p , 2004 .
[19] K. Ball. Chapter 4 – Convex Geometry and Functional Analysis , 2001 .
[20] Apostolos Giannopoulos,et al. Isotropic surface area measures , 1999 .
[21] F. Barthe. On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.
[22] Franck Barthe,et al. Inégalités de Brascamp-Lieb et convexité , 1997 .
[23] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[24] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[25] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[26] E. Lieb. Gaussian kernels have only Gaussian maximizers , 1990 .
[27] H. Groemer. Stability properties of geometric inequalities , 1990 .
[28] Keith Ball,et al. Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.
[29] H. Groemer,et al. On the Brunn-Minkowski theorem , 1988 .
[30] E. Lieb,et al. Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .
[31] C. Petty. Surface area of a convex body under affine transformations , 1961 .
[32] B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .
[33] W. Gustin. An isoperimetric minimax , 1953 .
[34] R. D. Gordon. Values of Mills' Ratio of Area to Bounding Ordinate and of the Normal Probability Integral for Large Values of the Argument , 1941 .
[35] F. Behrend. Über einige Affininvarianten konvexer Bereiche , 1937 .
[36] F. John. Polar correspondence with respect to a convex region , 1937 .
[37] P. Gruber,et al. Convex and Discrete Geometry , 2007 .
[38] F. Barthe. A Continuous Version of the Brascamp-Lieb Inequalities , 2004 .
[39] V. Milman,et al. Chapter 17 - Euclidean Structure in Finite Dimensional Normed Spaces , 2001 .
[40] H. Groemer,et al. Stability of Geometric Inequalities , 1993 .
[41] E. Lutwak. Selected Affine Isoperimetric Inequalities , 1993 .
[42] R. Schneider,et al. Stability Estimates for some Geometric Inequalities , 1991 .
[43] K. Ball. Volumes of sections of cubes and related problems , 1989 .
[44] V. I. Diskant. Stability of the solution of the Minkowski equation , 1973 .
[45] A. A. Giannopoulos,et al. Institute for Mathematical Physics Extremal Problems and Isotropic Positions of Convex Bodies Extremal Problems and Isotropic Positions of Convex Bodies , 2022 .