Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems
暂无分享,去创建一个
[1] Xavier Rivas,et al. Nonautonomous k-contact field theories , 2022, Journal of Mathematical Physics.
[2] M. Muñoz-Lecanda,et al. Multicontact formulation for non-conservative field theories , 2022, Journal of Physics A: Mathematical and Theoretical.
[3] X. Rivas,et al. Lagrangian–Hamiltonian formalism for cocontact systems , 2023, Journal of Geometric Mechanics.
[4] Jordi Gaset Rifà,et al. Symmetries, conservation and dissipation in time-dependent contact systems , 2022, 2212.14848.
[5] J. Grabowski,et al. Contact geometric mechanics: the Tulczyjew triples , 2022, 2209.03154.
[6] L. Colombo,et al. Nonsmooth Herglotz variational principle , 2022, 2023 American Control Conference (ACC).
[7] J. Lucas,et al. Contact Lie systems: theory and applications , 2022, Journal of Physics A: Mathematical and Theoretical.
[8] M. Muñoz-Lecanda,et al. Time-dependent contact mechanics , 2022, Monatshefte für Mathematik.
[9] M. Lainz,et al. Discrete Hamilton–Jacobi theory for systems with external forces , 2021, Journal of Physics A: Mathematical and Theoretical.
[10] Manuel Lainz,et al. Geometric Hamilton–Jacobi theory for systems with external forces , 2021, Journal of Mathematical Physics.
[11] N. Rom'an-Roy,et al. Skinner–Rusk formalism for k-contact systems , 2021, Journal of Geometry and Physics.
[12] M. D. Le'on,et al. Optimal Control, Contact Dynamics and Herglotz Variational Problem , 2020, Journal of Nonlinear Science.
[13] J. Grabowski,et al. A novel approach to contact Hamiltonians and contact Hamilton-Jacobi theory , 2022 .
[14] Manuel Lainz Valc'azar,et al. Implicit contact dynamics and Hamilton-Jacobi theory , 2021, Differential Geometry and its Applications.
[15] J. Marrero,et al. Extended Hamilton–Jacobi Theory, Symmetries and Integrability by Quadratures , 2021, Mathematics.
[16] M. de León,et al. The Hamilton–Jacobi Theory for Contact Hamiltonian Systems , 2021, Mathematics.
[17] S. Grillo. Non-commutative integrability, exact solvability and the Hamilton–Jacobi theory , 2018, Analysis and Mathematical Physics.
[18] M. D. Le'on,et al. A review on contact Hamiltonian and Lagrangian systems , 2020, 2011.05579.
[19] M. de León,et al. Invariant measures for contact Hamiltonian systems: symplectic sandwiches with contact bread , 2020, Journal of Physics A: Mathematical and Theoretical.
[20] A. Simoes,et al. Contact geometry for simple thermodynamical systems with friction , 2020, Proceedings of the Royal Society A.
[21] M. Muñoz-Lecanda,et al. A K-contact Lagrangian formulation for nonconservative field theories , 2020, 2002.10458.
[22] S. Grillo,et al. Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures , 2019, Journal of Mathematical Physics.
[23] Manuel Lainz Valc'azar,et al. Infinitesimal symmetries in contact Hamiltonian systems , 2019, Journal of Geometry and Physics.
[24] M. Muñoz-Lecanda,et al. A contact geometry framework for field theories with dissipation , 2019, Annals of Physics.
[25] M. D. Le'on,et al. Hamilton–Jacobi theory for gauge field theories , 2019, 1904.10264.
[26] S. Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems , 2017, Journal of Geometric Mechanics.
[27] O. Esen,et al. Hamilton–Jacobi formalism on locally conformally symplectic manifolds , 2019, Journal of Mathematical Physics.
[28] Aritra Ghosh,et al. Contact geometry and thermodynamics of black holes in AdS spacetimes , 2019, Physical Review D.
[29] M. Muñoz-Lecanda,et al. New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries , 2019, 1907.02947.
[30] G. S. Frederico,et al. Noether theorem for action-dependent Lagrangian functions: conservation laws for non-conservative systems , 2019, Nonlinear Dynamics.
[31] Manuel Lainz Valc'azar,et al. Singular Lagrangians and precontact Hamiltonian systems , 2019, International Journal of Geometric Methods in Modern Physics.
[32] A. Bravetti. Contact geometry and thermodynamics , 2019, International Journal of Geometric Methods in Modern Physics.
[33] Manuel Lainz Valc'azar,et al. Contact Hamiltonian systems , 2018, Journal of Mathematical Physics.
[34] M. D. Le'on,et al. A geometric Hamilton–Jacobi theory on a Nambu–Jacobi manifold , 2017, International Journal of Geometric Methods in Modern Physics.
[35] Florio M. Ciaglia,et al. Contact manifolds and dissipation, classical and quantum , 2018, Annals of Physics.
[36] Chao Wang,et al. Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior , 2018, Annals of Physics.
[37] G. S. Frederico,et al. An Action Principle for Action-dependent Lagrangians: toward an Action Principle to non-conservative systems , 2018, 1803.08308.
[38] A. Schaft,et al. Homogeneous Hamiltonian Control Systems Part I: Geometric Formulation , 2018 .
[39] A. Schaft,et al. Homogeneous Hamiltonian Control Systems Part II: Application to thermodynamic systems , 2018 .
[40] F. Redig,et al. A Hamilton-Jacobi point of view on mean-field Gibbs-non-Gibbs transitions , 2017, 1711.03489.
[41] Florio M. Ciaglia,et al. Hamilton-Jacobi Theory and Information Geometry , 2017, GSI.
[42] Alessandro Bravetti,et al. Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.
[43] M. D. Le'on,et al. A Hamilton-Jacobi theory for implicit differential systems , 2017, 1708.01586.
[44] G. S. Frederico,et al. Action principle for action-dependent Lagrangians toward nonconservative gravity: Accelerating universe without dark energy , 2017, 1705.04604.
[45] M. de León,et al. Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems , 2016, 1612.06224.
[46] M. León,et al. Geometric Hamilton–Jacobi theory on Nambu–Poisson manifolds , 2016, 1604.08904.
[47] Florio M. Ciaglia,et al. Hamilton-Jacobi approach to Potential Functions in Information Geometry , 2016, 1608.06584.
[48] A. Bravetti,et al. Contact Hamiltonian Mechanics , 2016, 1604.08266.
[49] S. Grillo,et al. A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds , 2015, 1512.03121.
[50] Shin-itiro Goto,et al. Contact geometric descriptions of vector fields on dually flat spaces and their applications in electric circuit models and nonequilibrium statistical mechanics , 2015, 1512.00950.
[51] V. Zatloukal,et al. Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory , 2015, 1504.08344.
[52] D. D. Diego,et al. Hamilton-Jacobi theory in Cauchy data space , 2014, 1411.3959.
[53] D. D. Diego,et al. A Hamilton-Jacobi theory on Poisson manifolds , 2014 .
[54] M. D. Le'on,et al. Geometric Hamilton–Jacobi theory for higher-order autonomous systems , 2013, 1309.2166.
[55] A. Kholodenko. Applications Of Contact Geometry And Topology In Physics , 2013 .
[56] M. D. Le'on,et al. Hamilton-Jacobi theory in k-cosymplectic field theories , 2013, 1304.3360.
[57] M. Leok,et al. Dirac Structures and Hamilton-Jacobi Theory for Lagrangian Mechanics on Lie Algebroids , 2012, 1211.4561.
[58] A. Budiyono. Quantization from Hamilton–Jacobi theory with a random constraint , 2012, 1205.0244.
[59] D. D. Diego,et al. A Hamilton-Jacobi Theory for Singular Lagrangian Systems in the Skinner and Rusk Setting , 2012, 1205.0168.
[60] D. D. Diego,et al. On the Hamilton-Jacobi Theory for Singular Lagrangian Systems , 2012, 1204.6217.
[61] L. Vitagliano. GEOMETRIC HAMILTON–JACOBI FIELD THEORY , 2011, 1109.1677.
[62] Tomoki Ohsawa,et al. Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints , 2011, 1109.6056.
[63] A. Bloch,et al. Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization , 2011, 1102.4361.
[64] C. Boyer. Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S^2×S^3 , 2011, 1101.5587.
[65] G. Marmo,et al. Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems , 2009, 0908.2453.
[66] S. Tabachnikov,et al. Contact complete integrability , 2009, 0910.0375.
[67] N. Mukunda,et al. The Hamilton--Jacobi Theory and the Analogy between Classical and Quantum Mechanics , 2009, 0907.0964.
[68] G. Marmo,et al. Hamilton-Jacobi theory and the evolution operator , 2009, 0907.1039.
[69] Juan Carlos Marrero,et al. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic Mechanics , 2008, 0801.4358.
[70] Hansjörg Geiges,et al. An introduction to contact topology , 2008 .
[71] M. León,et al. Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems , 2007, 0705.3739.
[72] G. Marmo,et al. Geometric Hamilton-Jacobi theory , 2006, math-ph/0604063.
[73] M. Montesinos,et al. Hamilton-Jacobi theory for Hamiltonian systems with non-canonical symplectic structures , 2006, gr-qc/0601140.
[74] Noboru Sakamoto,et al. Analysis of the Hamilton--Jacobi Equation in Nonlinear Control Theory by Symplectic Geometry , 2001, SIAM J. Control. Optim..
[75] M. León,et al. Gradient vector fields on cosymplectic manifolds , 1992 .
[76] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .
[77] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[78] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.