Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions
暂无分享,去创建一个
Yuri Kozitsky | Yuri Kondratiev | Oleksandr Kutoviy | Christoph Berns | Y. Kondratiev | Y. Kozitsky | O. Kutoviy | Christoph Berns
[1] Stefan Grosskinsky,et al. Interacting particle systems MA 4 H 3 , .
[2] Dmitri Finkelshtein,et al. Semigroup approach to birth-and-death stochastic dynamics in continuum , 2011, 1109.5094.
[4] O. Lanford. The classical mechanics of one-dimensional systems of infinitely many particles , 1968 .
[5] R. Dobrushin,et al. Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction , 1977 .
[6] T. Liggett. Interacting Particle Systems , 1985 .
[7] N. N. Bogolyubov,et al. Problems of a Dynamical Theory in Statistical Physics , 1959 .
[8] Dmitri Finkelshtein,et al. Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..
[9] D. Ruelle. Statistical Mechanics: Rigorous Results , 1999 .
[10] E. Lytvynov,et al. Equilibrium Kawasaki dynamics of continuous particle systems , 2005 .
[11] Yuri Kozitsky,et al. Glauber Dynamics in Continuum: A Constructive Approach to Evolution of States , 2011 .
[12] Claudia Neuhauser,et al. Mathematical Challenges in Spatial Ecology , 2001 .
[13] 尾畑 伸明. Configuration Space and Unitary Representations of the Group of Diffeomorphisms , 1987 .
[14] E. Caglioti,et al. Non-Equilibrium Dynamics of Three-Dimensional Infinite Particle Systems , 2000 .
[15] Yu. M. Sukhov,et al. Dynamical Systems of Statistical Mechanics , 1989 .
[16] Errico Presutti,et al. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics , 2008 .
[17] K. Kawasaki. Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I , 1966 .
[18] Oleksandr Kutoviy,et al. On the metrical properties of the configuration space , 2006 .
[19] H. Spohn. Large Scale Dynamics of Interacting Particles , 1991 .
[20] Yuri Kondratiev,et al. On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .
[21] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces , 1998 .
[22] Dmitri Finkelshtein,et al. An approximative approach for construction of the Glauber dynamics in continuum , 2009 .
[23] Yuri G. Kondratiev,et al. Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .
[24] François Trèves. Ovcyannikov theorem and hyperdifferential operators , 1968 .
[25] K. Deimling. Ordinary differential equations in Banach spaces , 1977 .
[26] Nancy L. Garcia,et al. Spatial birth and death processes as solutions of stochastic equations , 2006 .
[27] E. Olivieri,et al. Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics , 2009 .
[28] Thomas M Liggett,et al. Stochastic models for large interacting systems and related correlation inequalities , 2010, Proceedings of the National Academy of Sciences.
[29] J. T. Cox,et al. Coalescing Random Walks and Voter Model Consensus Times on the Torus in $\mathbb{Z}^d$ , 1989 .
[30] D. Finkelshtein,et al. Markov Dynamics in a Spatial Ecological Model with Dispersion and Competition , 2011 .
[31] Yuri Kondratiev,et al. Ergodicity of non-equilibrium Glauber dynamics in continuum , 2010 .
[32] H. Thieme. Stochastic semigroups : their construction by perturbation and approximation , 2006 .
[33] Dmitri Finkelshtein,et al. Vlasov Scaling for Stochastic Dynamics of Continuous Systems , 2010 .
[34] Yuri G. Kondratiev,et al. Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.
[35] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[36] Non-equilibrium stochastic dynamics in continuum: The free case , 2007, math/0701736.
[37] Tobias Kuna,et al. HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .
[38] Pavel I. Naumkin,et al. Nonlinear Nonlocal Equations in the Theory of Waves , 1994 .
[39] T M Li Ge Te. Interacting Particle Systems , 2013 .