High frequency dispersive estimates for the Schrödinger equation in high dimensions

We prove optimal dispersive estimates at high frequency for the Schrodinger group with real-valued potentials $V(x)=O(|x|^{-\delta})$, $\delta>n-1$, and $V\in C^k({\bf R}^n$, $k>k_n$, where $n\ge 4$ and $(n-3)/2\le k_n<n/2$. We also give a sufficient condition in terms of $L^1\to L^\infty$ bounds for the formal iterations of Duhamel's formula, which might be satisfied for potentials of less regularity.

[1]  W. Schlag,et al.  Time decay for solutions of Schrödinger equations with rough and time-dependent potentials , 2001, math/0110098.

[2]  Simon Moulin High Frequency Dispersive Estimates in Dimension Two , 2007, 0707.3664.

[3]  Simon Moulin,et al.  Low-frequency dispersive estimates for the Schrödinger group in higher dimensions , 2007, Asymptot. Anal..

[4]  William R. Green,et al.  DISPERSIVE ESTIMATES FOR THE SCHRÖDINGER EQUATION FOR C n − 3 2 POTENTIALS IN , 2009 .

[5]  The $L^p$ boundedness of wave operators for Schr\ , 2006, math-ph/0605036.

[6]  A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions , 2005, math/0508206.

[7]  Dispersive Estimates for Schrödinger Operators in Dimensions One and Three , 2003, math/0306108.

[8]  Georgi Vodev Dispersive Estimates of Solutions to the Schrödinger Equation , 2006, Asymptot. Anal..

[9]  William R. Green,et al.  Dispersive Estimates for the Schrödinger Equation for Potentials in Odd Dimensions , 2010 .

[10]  Domenico,et al.  Boundedness of Wave Operators for Schrödinger Operators with Threshold Singularities II . Even Dimensional Case , 2006 .

[11]  William R. Green Dispersive estimates for the Schrodinger equation , 2010 .

[12]  Claudio Cuevas,et al.  Dispersive estimates for the Schrödinger equation in dimensions four and five , 2008, Asymptot. Anal..

[13]  G. Vodev Dispersive Estimates of Solutions to the Wave Equation with a Potential in Dimensions n ≥ 4 , 2006, math/0602058.

[14]  A. Soffer,et al.  Decay estimates for Schrödinger operators , 1991 .

[15]  Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials , 2004, math/0409327.