Exact and analytic bayesian inference for orientation distribution functions

Characterizing the fibre orientation uncertainty is essential for quantitative tractography approaches, such as probabilistic tracking. We present an analytic way to perform Bayesian inference on diffusion ODFs from Q-ball imaging data. Drawing a random sample of ODFs reduces to sampling a multivariate t distribution. Assuming that the local ODF maxima provide fibre orientations, a random sample of orientations can then be directly obtained from the ODF sample. Contrary to approximate inference approaches, such as MCMC, our method samples from the exact posterior distribution. Results are illustrated on simulated and human in-vivo data.

[1]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[2]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[3]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[4]  Guido Gerig,et al.  Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling , 2009, Medical Image Anal..

[5]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[6]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[7]  Frans A. J. Verstraten,et al.  Probabilistic Inference on Q-ball Imaging Data , 2007, IEEE Transactions on Medical Imaging.

[8]  Christophe Lenglet,et al.  ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[9]  Daniel C Alexander,et al.  Optimal acquisition orders of diffusion‐weighted MRI measurements , 2007, Journal of magnetic resonance imaging : JMRI.

[10]  Lyle D. Broemeling,et al.  Bayesian Analysis of Linear Models. , 1986 .

[11]  Philip A. Cook,et al.  Exploiting peak anisotropy for tracking through complex structures , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[12]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[13]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[14]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[15]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[16]  Jim Albert,et al.  Bayesian Computation with R , 2008 .

[17]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[18]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[19]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[20]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[21]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[22]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.