Autosolvation: Architecture and Selection of Chiral Conformers in Alkylcobalt Carbonyl Molecular Clocks

Autosolvation is an important factor in stabilizing the architecture of medium complicated molecules. It is a kind of “supramolecular force” acting in intramolecular manner, consisting of orbital-orbital interactions between polar groups, separated by more than one covalent bonds within the same molecule. This effect facilitates also the development of chiral conformations. Two typical alkylcobalt carbonyl type molecules are discussed here as examples of autosolvating intramolecular interactions, leading to dramatic selection of chiral conformers and indicating also to the limits of the effect. The conformers stabilized by autosolvation and their interconversion are excellent examples of a “molecular clockwork”. Operation mode of these molecular clockworks gives some insight into the intramolecular transfer of chiral information.

[1]  Gyula Pályi,et al.  Chirality of the Very First Molecule in Absolute Enantioselective Synthesis , 2007 .

[2]  B. Barabás,et al.  Data-Based Stochastic Approach to Absolute Asymmetric Synthesis by Autocatalysis , 2009 .

[3]  Kenso Soai,et al.  Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule , 1995, Nature.

[4]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[5]  G. Tóth,et al.  Concerted Development of Chiral Conformations in [(Alkyloxycarbonyl)methyl]tricarbonyl(triphenylphosphane)cobalt Complexes , 2001 .

[6]  H. Alper,et al.  Intermediates of the PTC carbonylation of benzyl halides by cobalt carbonyls, II , 2011 .

[7]  Kenso Soai,et al.  Highly Enantioselective Catalytic Asymmetric Automultiplication of Chiral Pyrimidyl Alcohol. , 1996 .

[8]  G. Pályi,et al.  Carbohydrate-derived alkylcobalt carbonyl:([(1,2:5,6-di-O,O-isopropylidene-alpha-D-glucofuranos-3-yl)oxycarbonyl]methyl)cobalt tricarbonyl triphenylphosphene. , 2001, Chirality.

[9]  G. W. Wheland,et al.  Advanced Organic Chemistry , 1951, Nature.

[10]  Kenso Soai,et al.  Spontaneous absolute asymmetric synthesis in the presence of achiral silica gel in conjunction with asymmetric autocatalysis. , 2006, Chirality.

[11]  G. Ercolani Principles for designing an achiral receptor promoting asymmetric autocatalysis with amplification of chirality , 2014 .

[12]  G. Pályi,et al.  Alkylcobalt carbonyls. Part XIV. Generation of chiral conformations by centers of chirality in organocobalt complexes , 2005 .

[13]  K. Soai,et al.  Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. , 2000, Accounts of Chemical Research.

[14]  Gyula Pályi,et al.  Generalization possibilities of autocatalytic absolute enantioselective synthesis , 2006 .

[15]  G. Pályi,et al.  Two-Way Intramolecular Transfer of Chirality in Organocobalt Complexes , 2007 .

[16]  H. Alper,et al.  Intermediates of cobalt-catalysed PTC carbonylation of benzyl halides , 2003 .

[17]  M. Kajtár,et al.  Optically active alkylcobalt carbonyls , 1981 .

[18]  Gyula Pályi,et al.  THE CONCEPT OF RACEMATES AND THE SOAI-REACTION( ISOLAB'05 プロシーディング) , 2006 .

[19]  G. Pályi Autosolvation. Violation of the 18-electron rule via intramolecular donor-acceptor interactions , 1977 .

[20]  P. Herdewijn,et al.  Influence of the nucleobase and anchimeric assistance of the carboxyl acid groups in the hydrolysis of amino acid nucleoside phosphoramidates. , 2012, Chemistry.

[21]  Y. Struchkov,et al.  Stable alkylcobalt carbonyls: [(alkoxycarbonyl)methyl]cobalt tetracarbonyl compounds , 1981 .

[22]  R. Szilagyi,et al.  III. Modelling of the “well-defined” carbenes , 1994 .

[23]  R. Szilagyi,et al.  Molecular mechanical studies on the olefin metathesis reaction , 1994 .

[24]  R. Szilagyi,et al.  Density functional studies of [(alkoxy-carbonyl)methyl]cobalt tricarbonyl triphenylphosphine complexes: an α-ester η3-coordination , 2003 .

[25]  Kenso Soai,et al.  Asymmetric Autocatalysis Triggered by Chiral Crystals Formed from Achiral Compounds and Chiral Isotopomers , 2012 .

[26]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[27]  G. Pályi,et al.  Molecular-Level Machines: The Clockwork Model , 2003 .

[28]  G. Pályi,et al.  Alkylcobalt carbonyls. 7. (.eta.1-Benzyl)-, (.eta.3-benzyl)-, and (.eta.1-phenylacetyl)cobalt carbonyls , 1986 .

[29]  G. Pályi,et al.  η1-and η3-Benzylcobalt carbonyls , 1982 .

[30]  G. Pályi,et al.  Chapter 3 – Molecular Clockworks as Potential Models for Biological Chirality , 2004 .

[31]  Gyula Pályi,et al.  Single chiral molecule as possible starting element of complex chiral systems , 2013, Rendiconti Lincei.

[32]  G. Pályi,et al.  UV spectrum and WHEHMO description of methylcobalt tetracarbonyl , 1979 .

[33]  Gyula Pályi,et al.  Violation of distribution symmetry in statistical evaluation of absolute enantioselective synthesis. , 2007, The journal of physical chemistry. B.

[34]  Kenso Soai,et al.  Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis , 2003 .

[35]  Kenso Soai,et al.  Amplification of chirality from extremely low to greater than 99.5 % ee by asymmetric autocatalysis. , 2003, Angewandte Chemie.

[36]  Gyula Pályi,et al.  First molecules, biological chirality, origin(s) of life. , 2011, Chirality.