Vision Based Intelligent Wheel Chair Control: The Role of Vision and Inertial Sensing in Topological Navigation

This paper describes ongoing research on vision based mobile robot navigation for wheel chairs. After a guided tour through a natural environment while taking images at regular time intervals, natural landmarks are extracted to automatically build a topological map. Later on this map can be used for place recognition and navigation. We use visual servoing on the landmarks to steer the robot. In this paper, we investigate ways to improve the performance by incorporating inertial sensors. © 2004 Wiley Periodicals, Inc.

[1]  Luc Van Gool,et al.  Markerless augmented reality with a real-time affine region tracker , 2001, Proceedings IEEE and ACM International Symposium on Augmented Reality.

[2]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[3]  Hobart R. Everett,et al.  Mobile Robot Positioning - Sensors and Techniques , 1997 .

[4]  Jun Rekimoto,et al.  CyberCode: designing augmented reality environments with visual tags , 2000, DARE '00.

[5]  Bernhard Schölkopf,et al.  Learning view graphs for robot navigation , 1997, AGENTS '97.

[6]  Andrew J. Davison,et al.  Mobile Robot Navigation Using Active Vision , 1998 .

[7]  Zhengyou Zhang Estimating Motion and Structure from Correspondences of Line Segments between Two Perspective Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  M. Nuttin,et al.  Selection of suitable human-robot interaction techniques for intelligent wheelchairs , 2002, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication.

[9]  Andrew Zisserman,et al.  Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Hendrik Van Brussel,et al.  Obstacle avoidance and shared autonomy for electric wheel chairs: an evaluation of preliminary experiments , 2001 .

[11]  Luc Van Gool,et al.  Recognizing color patterns irrespective of viewpoint and illumination , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[12]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Luc Van Gool,et al.  HPAT Indexing for Fast Object/Scene Recognition Based on Local Appearance , 2003, CIVR.

[14]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Klaus Dorfmüller,et al.  Robust tracking for augmented reality using retroreflective markers , 1999, Comput. Graph..

[16]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Dennis Tell,et al.  Wide baseline matching with applications to visual servoing , 2002 .

[18]  Ronald Azuma,et al.  Hybrid inertial and vision tracking for augmented reality registration , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[19]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).