On the moving boundary conditions for a hydraulic fracture

This paper re-examines the boundary conditions at the moving front of a hydraulic fracture when the fluid front has coalesced with the crack edge. This practically important particular case is treated as the zero fluid lag limit of the general case when the two fronts are distinct. The limiting process shows what becomes of the two boundary conditions on the fluid front, a pressure condition and a Stefan condition, when the lag vanishes. On the one hand, the pressure condition disappears as the net pressure (the difference between the fluid pressure and the magnitude of the far-field stress normal to the fracture) becomes singular. On the other hand, the Stefan condition, which equates the front velocity to the average fluid velocity, transforms into a zero flux boundary condition at the front. As a consequence, the velocity of the coalesced front does not appear explicitly in the boundary conditions. However, the front velocity can still be extracted from the near-tip aperture field by a nonlinear asymptotic analysis. The paper concludes with a description of an algorithm to propagate the combined front, which explicitly uses the known multiscale asymptotics of the fracture aperture.

[1]  S. K. Griffiths,et al.  Numerical analysis of hydraulically-driven fractures☆ , 1982 .

[2]  Anthony R. Ingraffea,et al.  Hydraulic fracturing simulation in parallel computing environments , 1997 .

[3]  Emmanuel M Detournay,et al.  Self‐similar solution of a plane‐strain fracture driven by a power‐law fluid , 2002 .

[4]  J. Geertsma,et al.  A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures , 1969 .

[5]  Anthony R. Ingraffea,et al.  Numerical simulation of 3D hydraulic fracture using Newtonian and power-law fluids , 1993 .

[6]  Robert G. Jeffrey,et al.  Hydraulic fracturing applied to inducing longwall coal mine goaf falls , 2000 .

[7]  R. Clifton,et al.  On The Computation Of The Three-Dimensional Geometry Of Hydraulic Fractures , 1979 .

[8]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[9]  George C. Howard,et al.  Optimum Fluid Characteristics for Fracture Extension , 1957 .

[10]  R. Jeffrey,et al.  Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture , 2012 .

[11]  S. L. Crouch,et al.  Boundary element methods in solid mechanics , 1983 .

[12]  E. Detournay,et al.  Propagation of a semi-infinite hydraulic fracture in a poroelastic medium , 2013 .

[13]  D. Pollard,et al.  On the mechanical interaction between a fluid-filled fracture and the earth's surface , 1979 .

[14]  Allan M. Rubin,et al.  Propagation of Magma-Filled Cracks , 1995 .

[15]  On modeling hydraulic fracture in proper variables: stiffness, accuracy, sensitivity , 2012, 1203.5691.

[16]  Emmanuel M Detournay,et al.  Plane strain propagation of a hydraulic fracture in a permeable rock , 2008 .

[17]  J. H. Curran,et al.  A three‐dimensional hydraulic fracturing simulator , 1989 .

[18]  Emmanuel M Detournay,et al.  Viscosity-dominated hydraulic fractures , 2007 .

[19]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[20]  Emmanuel M Detournay,et al.  The Tip Region of a Fluid-Driven Fracture in an Elastic Medium , 2000 .

[21]  Emmanuel M Detournay,et al.  Numerical Simulation of Hydraulic Fracturing in the Viscosity-Dominated Regime , 2007 .

[22]  R. C. Kerr,et al.  Fluid‐mechanical models of crack propagation and their application to magma transport in dykes , 1991 .

[23]  Elizaveta Gordeliy,et al.  Coupling schemes for modeling hydraulic fracture propagation using the XFEM , 2013 .

[24]  Lawrence C. Murdoch,et al.  Mechanical analysis of idealized shallow hydraulic fracture , 2002 .

[25]  Varun,et al.  Three-Dimensional Numerical Model of Hydraulic Fracturing in Fractured Rock Masses , 2013 .

[26]  E. Detournay,et al.  Early-Time Solution for a Radial Hydraulic Fracture , 2007 .

[27]  Juliane Junker,et al.  Solution Of Crack Problems The Distributed Dislocation Technique , 2016 .

[28]  J. K. Lee,et al.  Explicit time‐dependent solutions and numerical evaluations for penny‐shaped hydraulic fracture models , 1987 .

[29]  Leon M Keer,et al.  Growth rate of a penny-shaped crack in hydraulic fracturing of rocks , 1976 .

[30]  A. Khoei,et al.  An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model , 2013 .

[31]  R. H. Nilson,et al.  An integral method for predicting hydraulic fracture propagation driven by gases or liquids , 1986 .

[32]  Alexander M. Korsunsky,et al.  Solution of Crack Problems , 1996 .

[33]  Emmanuel M Detournay,et al.  A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag , 2011 .

[34]  Emmanuel M Detournay,et al.  The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid , 2003, Journal of Fluid Mechanics.

[35]  L. Keer,et al.  Theoretical study of hydraulically fractured penny‐shaped cracks in hot, dry rocks , 1979 .

[36]  Dmitry I. Garagash,et al.  Plane-Strain Propagation of a Fluid-Driven Crack in a Permeable Rock with Fracture Toughness , 2010 .

[37]  Emmanuel M Detournay,et al.  Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic solutions , 2002 .

[38]  Emmanuel M Detournay,et al.  Toughness-dominated Hydraulic Fracture with Leak-off , 2005 .

[39]  A. Linkov On efficient simulation of hydraulic fracturing in terms of particle velocity , 2012 .

[40]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[41]  Lei Zhou,et al.  A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects , 2013 .

[42]  Emmanuel M Detournay,et al.  Multiscale tip asymptotics in hydraulic fracture with leak-off , 2011, Journal of Fluid Mechanics.

[43]  Emmanuel M Detournay,et al.  The crack tip region in hydraulic fracturing , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[44]  A. Peirce Modeling multi-scale processes in hydraulic fracture propagation using the implicit level set algorithm , 2015 .

[45]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[46]  Elizaveta Gordeliy,et al.  Implicit level set schemes for modeling hydraulic fractures using the XFEM , 2013 .

[47]  Transient solution for a plane‐strain fracture driven by a shear‐thinning, power‐law fluid , 2006 .

[48]  Vaughan R. Voller,et al.  Basic Control Volume Finite Element Methods for Fluids and Solids , 2009, IISc Research Monographs Series.

[49]  J. K. Lee,et al.  Three-Dimensional Modeling of Hydraulic Fractures in Layered Media: Part I—Finite Element Formulations , 1990 .

[50]  Brice Lecampion,et al.  The Impact of the Near-Tip Logic on the Accuracy and Convergence Rate of Hydraulic Fracture Simulators Compared to Reference Solutions , 2013 .

[51]  B. Lenoach,et al.  The crack tip solution for hydraulic fracturing in a permeable solid , 1995 .

[52]  A. Peirce,et al.  An implicit level set method for modeling hydraulically driven fractures , 2008 .

[53]  A. Bunger,et al.  Effective and Sustainable Hydraulic Fracturing , 2013 .

[54]  D. L. Sikarskie Rock Mechanics Symposium , 1973 .

[55]  Adrian J. Lew,et al.  A finite element approach to the simulation of hydraulic fractures with lag , 2013 .

[56]  Dmitry I. Garagash,et al.  Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness , 2006 .

[57]  Emmanuel M Detournay,et al.  Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution , 2005 .

[58]  Benoît Carrier,et al.  Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model , 2012 .

[59]  Zuorong Chen Finite element modelling of viscosity-dominated hydraulic fractures , 2012 .