p21-activated Kinase-aberrant Activation and Translocation in Alzheimer Disease Pathogenesis*

Defects in dendritic spines and synapses contribute to cognitive deficits in mental retardation syndromes and, potentially, Alzheimer disease. p21-activated kinases (PAKs) regulate actin filaments and morphogenesis of dendritic spines regulated by the Rho family GTPases Rac and Cdc42. We previously reported that active PAK was markedly reduced in Alzheimer disease cytosol, accompanied by downstream loss of the spine actin-regulatory protein Drebrin. β-Amyloid (Aβ) oligomer was implicated in PAK defects. Here we demonstrate that PAK is aberrantly activated and translocated from cytosol to membrane in Alzheimer disease brain and in 22-month-old Tg2576 transgenic mice with Alzheimer disease. This active PAK coimmunoprecipitated with the small GTPase Rac and both translocated to granules. Aβ42 oligomer treatment of cultured hippocampal neurons induced similar effects, accompanied by reduction of dendrites that were protected by kinase-active but not kinase-dead PAK. Aβ42 oligomer treatment also significantly reduced N-methyl-d-aspartic acid receptor subunit NR2B phosphotyrosine labeling. The Src family tyrosine kinase inhibitor PP2 significantly blocked the PAK/Rac translocation but not the loss of p-NR2B in Aβ42 oligomer-treated neurons. Src family kinases are known to phosphorylate the Rac activator Tiam1, which has recently been shown to be Aβ-responsive. In addition, anti-oligomer curcumin comparatively suppressed PAK translocation in aged Tg2576 transgenic mice with Alzheimer amyloid pathology and in Aβ42 oligomer-treated cultured hippocampal neurons. Our results implicate aberrant PAK in Aβ oligomer-induced signaling and synaptic deficits in Alzheimer disease.

[1]  G. Frasca,et al.  Integrins mediate β‐amyloid‐induced cell‐cycle activation and neuronal death , 2008 .

[2]  D. Bredesen,et al.  Signal transduction in Alzheimer disease: p21‐activated kinase signaling requires C‐terminal cleavage of APP at Asp664 , 2008, Journal of neurochemistry.

[3]  S. Tonegawa,et al.  Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice , 2007, Proceedings of the National Academy of Sciences.

[4]  Bernardo L Sabatini,et al.  Natural Oligomers of the Alzheimer Amyloid-β Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway , 2007, The Journal of Neuroscience.

[5]  W. Klein,et al.  Aβ Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer's Disease , 2007, The Journal of Neuroscience.

[6]  R. Maccioni,et al.  Aβ1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases , 2007, Journal of Cell Science.

[7]  M. Staufenbiel,et al.  Phosphorylation of Actin-Depolymerizing Factor/Cofilin by LIM-Kinase Mediates Amyloid β-Induced Degeneration: A Potential Mechanism of Neuronal Dystrophy in Alzheimer's Disease , 2006, The Journal of Neuroscience.

[8]  J. Wuu,et al.  Differential Expression of Synaptic Proteins in the Frontal and Temporal Cortex of Elderly Subjects With Mild Cognitive Impairment , 2006, Journal of neuropathology and experimental neurology.

[9]  Mark Bowlby,et al.  Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Gallagher,et al.  A specific amyloid-β protein assembly in the brain impairs memory , 2006, Nature.

[11]  B. Teter,et al.  Antibodies against β‐amyloid reduce aβ oligomers, glycogen synthase kinase‐3β activation and τ phosphorylation in vivo and in vitro , 2006 .

[12]  B. Teter,et al.  Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease , 2006, Nature Neuroscience.

[13]  L. Mucke,et al.  Fyn Kinase Induces Synaptic and Cognitive Impairments in a Transgenic Mouse Model of Alzheimer's Disease , 2005, The Journal of Neuroscience.

[14]  P. T. Nguyen,et al.  Dendritic Spine Abnormalities in Amyloid Precursor Protein Transgenic Mice Demonstrated by Gene Transfer and Intravital Multiphoton Microscopy , 2005, The Journal of Neuroscience.

[15]  Takashi Morihara,et al.  Dietary n‐3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease , 2005, The European journal of neuroscience.

[16]  P. Greengard,et al.  Regulation of NMDA receptor trafficking by amyloid-β , 2005, Nature Neuroscience.

[17]  L. Van Aelst,et al.  Rho GTPases, dendritic structure, and mental retardation. , 2005, Journal of neurobiology.

[18]  Dominic M. Walsh,et al.  Certain Inhibitors of Synthetic Amyloid β-Peptide (Aβ) Fibrillogenesis Block Oligomerization of Natural Aβ and Thereby Rescue Long-Term Potentiation , 2005, The Journal of Neuroscience.

[19]  Fusheng Yang,et al.  Curcumin Inhibits Formation of Amyloid β Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo* , 2005, Journal of Biological Chemistry.

[20]  Suzanne Paradis,et al.  The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines , 2005, Neuron.

[21]  D. Muller,et al.  The Mental Retardation Protein PAK3 Contributes to Synapse Formation and Plasticity in Hippocampus , 2004, The Journal of Neuroscience.

[22]  Alison R. Gregro,et al.  Structure-based design of potent and selective cell-permeable inhibitors of human beta-secretase (BACE-1). , 2004, Journal of medicinal chemistry.

[23]  C. Finch,et al.  Synaptic Targeting by Alzheimer's-Related Amyloid β Oligomers , 2004, The Journal of Neuroscience.

[24]  Takashi Morihara,et al.  Docosahexaenoic Acid Protects from Dendritic Pathology in an Alzheimer's Disease Mouse Model , 2004, Neuron.

[25]  M. Resh,et al.  Signaling from Integrins to Fyn to Rho Family GTPases Regulates Morphologic Differentiation of Oligodendrocytes , 2004, The Journal of Neuroscience.

[26]  M. Ehlers,et al.  Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease , 2004, Biological Psychiatry.

[27]  Susumu Tonegawa,et al.  Altered Cortical Synaptic Morphology and Impaired Memory Consolidation in Forebrain- Specific Dominant-Negative PAK Transgenic Mice , 2004, Neuron.

[28]  O. Vitolo,et al.  Dendrite and dendritic spine alterations in alzheimer models , 2004, Journal of neurocytology.

[29]  C. Finch,et al.  Self-assembly of Aβ1-42 into globular neurotoxins , 2003 .

[30]  Carl W. Cotman,et al.  Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis , 2003, Science.

[31]  R. Malinow,et al.  APP Processing and Synaptic Function , 2003, Neuron.

[32]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[33]  L. Mucke,et al.  Modulation of Alzheimer-Like Synaptic and Cholinergic Deficits in Transgenic Mice by Human Apolipoprotein E Depends on Isoform , Aging, and Overexpression of Amyloid β Peptides But Not on Plaque Formation , 2002, The Journal of Neuroscience.

[34]  K. Mikoshiba,et al.  Pak1 Is Involved in Dendrite Initiation as a Downstream Effector of Rac1 in Cortical Neurons , 2002, Molecular and Cellular Neuroscience.

[35]  W. K. Cullen,et al.  Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo , 2002, Nature.

[36]  Ger J. A. Ramakers,et al.  Rho proteins, mental retardation and the cellular basis of cognition , 2002, Trends in Neurosciences.

[37]  George A. Carlson,et al.  The Relationship between Aβ and Memory in the Tg2576 Mouse Model of Alzheimer's Disease , 2002, The Journal of Neuroscience.

[38]  Richard D Fetter,et al.  Regulation of Postsynaptic Structure and Protein Localization by the Rho-Type Guanine Nucleotide Exchange Factor dPix , 2001, Neuron.

[39]  J. Overmier,et al.  Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice , 2001, Neurobiology of Aging.

[40]  H. Shibasaki,et al.  α7 Nicotinic Receptor Transduces Signals to Phosphatidylinositol 3-Kinase to Block A β-Amyloid-induced Neurotoxicity* , 2001, The Journal of Biological Chemistry.

[41]  Shoji Komai,et al.  Characterization of Fyn-mediated Tyrosine Phosphorylation Sites on GluRε2 (NR2B) Subunit of theN-Methyl-d-aspartate Receptor* , 2001, The Journal of Biological Chemistry.

[42]  Ann Y. Nakayama,et al.  Small GTPases Rac and Rho in the Maintenance of Dendritic Spines and Branches in Hippocampal Pyramidal Neurons , 2000, The Journal of Neuroscience.

[43]  L. Mucke,et al.  Dominant negative effects of apolipoprotein E4 revealed in transgenic models of neurodegenerative disease , 2000, Neuroscience.

[44]  H. Cline,et al.  Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo , 2000, Nature Neuroscience.

[45]  C. Masters,et al.  Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease , 1999, Annals of neurology.

[46]  F T Zenke,et al.  Identification of a Central Phosphorylation Site in p21-activated Kinase Regulating Autoinhibition and Kinase Activity* , 1999, The Journal of Biological Chemistry.

[47]  C. Holt,et al.  The Neuronal Architecture of Xenopus Retinal Ganglion Cells Is Sculpted by Rho-Family GTPases In Vivo , 1999, The Journal of Neuroscience.

[48]  L. Lue,et al.  Soluble Amyloid β Peptide Concentration as a Predictor of Synaptic Change in Alzheimer’s Disease , 1999 .

[49]  S. Zipursky,et al.  Pak Functions Downstream of Dock to Regulate Photoreceptor Axon Guidance in Drosophila , 1999, Cell.

[50]  L. Tsai,et al.  The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity , 1998, Nature.

[51]  T. Morgan,et al.  Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Richard Threadgill,et al.  Regulation of Dendritic Growth and Remodeling by Rho, Rac, and Cdc42 , 1997, Neuron.

[53]  D. Purpura,et al.  Dendritic Spine "Dysgenesis" and Mental Retardation , 1974, Science.