Real Time Traffic Congestion Prediction and Mitigation at the City Scale

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. FINAL RESEARCH REPORT

[1]  Fang Liu,et al.  Inferring driving trajectories based on probabilistic model from large scale taxi GPS data , 2018, Physica A: Statistical Mechanics and its Applications.

[2]  Xianfeng Tang,et al.  Modeling Spatial-Temporal Dynamics for Traffic Prediction , 2018, ArXiv.

[3]  Jieping Ye,et al.  Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction , 2018, AAAI.

[4]  Linpeng Huang,et al.  Predicting Multi-step Citywide Passenger Demands Using Attention-based Neural Networks , 2018, WSDM.

[5]  Michael I. Jordan,et al.  Ray: A Distributed Framework for Emerging AI Applications , 2017, OSDI.

[6]  Franco Zambonelli,et al.  On Recommending Opportunistic Rides , 2017, IEEE Transactions on Intelligent Transportation Systems.

[7]  John Paul Shen,et al.  Data Driven Analysis of the Potentials of Dynamic Ride Pooling , 2017, IWCTS@SIGSPATIAL.

[8]  John Paul Shen,et al.  On the Real-time Vehicle Placement Problem , 2017, ArXiv.

[9]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[10]  Junhee Seok,et al.  Controllable Generative Adversarial Network , 2017, IEEE Access.

[11]  John Paul Shen,et al.  Space-Time Graph Modeling of Ride Requests Based on Real-World Data , 2017, AAAI Workshops.

[12]  Matthias Grossglauser,et al.  ChoiceRank: Identifying Preferences from Node Traffic in Networks , 2016, ICML.

[13]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Martin W. P. Savelsbergh,et al.  Enhancing Urban Mobility: Integrating Ride-Sharing and Public Transit , 2016, Comput. Oper. Res..

[15]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[16]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[17]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[18]  Jan H. Kietzmann,et al.  Ride On! Mobility Business Models for the Sharing Economy , 2014 .

[19]  Margaret Martonosi,et al.  Human mobility modeling at metropolitan scales , 2012, MobiSys '12.

[20]  C. Cela-Conde,et al.  Predicting beauty: fractal dimension and visual complexity in art. , 2011, British journal of psychology.

[21]  Carlo Ratti,et al.  Taxi-Aware Map: Identifying and Predicting Vacant Taxis in the City , 2010, AmI.

[22]  Christos Faloutsos,et al.  Fast feature selection using fractal dimension , 2010, J. Inf. Data Manag..

[23]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[24]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[25]  Christos Faloutsos,et al.  Estimating the Selectivity of Spatial Queries Using the 'Correlation' Fractal Dimension , 1995, VLDB.

[26]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[27]  Robert Hahn,et al.  The Ridesharing Revolution : Economic Survey and Synthesis , 2017 .

[28]  Jon Gauthier Conditional generative adversarial nets for convolutional face generation , 2015 .

[29]  Joseph E. Hoag,et al.  Synthetic data generation: theory, techniques and applications , 2008 .