Award Number: W81XWH-10-1-0337 TITLE: Identification and Characterization of MYC Regulatory Elements: Links to Prostate Cancer

In the traditional model of human disease genetics, mutations in coding regions of the genome were assumed to underlie disease phenotypes. It is only in the recent past that functional non-coding regions – such as promoters, enhancers and silencers – have been implicated in disease states. At its most basic level, cancer is a disease caused by the misexpression of genes normally responsible for regulating cell proliferation. It is therefore logical that mutations and variants within cis-regulatory elements controlling the expression of proto-oncogenes and tumor suppressor genes would underlie some tumorigenic gene expression changes. As changes in non-coding functional elements are harder to identify than alternations in protein coding sequences, many of the recent insights into cis-regulatory variants involved in cancer etiology have been uncovered by genome wide association studies (GWAS) highlighting risk variants in non-genic regions. Here, we highlight examples of cancer-associated variation in promoters, enhancers and silencers, as well as changes to the overall architecture of a gene’s regulatory landscape. These functional characterizations bring us closer to understanding the role of cisregulatory mutations and cancer risk/progression. 5.

[1]  E. Noonan,et al.  The Immunoglobulin Heavy Chain Gene 3’ Enhancers Induce Bcl2 Deregulation and Lymphomagenesis in Murine B Cells , 2011, Leukemia.

[2]  Matthew L. Freedman,et al.  Analysis of the 10q11 Cancer Risk Locus Implicates MSMB and NCOA4 in Human Prostate Tumorigenesis , 2010, PLoS genetics.

[3]  S. Inoue,et al.  Runx2 in human breast carcinoma: its potential roles in cancer progression , 2010, Cancer science.

[4]  Miguel Manzanares,et al.  Allelic Variation at the 8q23.3 Colorectal Cancer Risk Locus Functions as a Cis-Acting Regulator of EIF3H , 2010, PLoS genetics.

[5]  M. Nóbrega,et al.  An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. , 2010, Genome research.

[6]  M. Freedman,et al.  Chromosome 8q24-Associated Cancers and MYC. , 2010, Genes & cancer.

[7]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[8]  G. Coetzee,et al.  8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC , 2010, Proceedings of the National Academy of Sciences.

[9]  Hongling Liao,et al.  Long-range enhancers on 8q24 regulate c-Myc , 2010, Proceedings of the National Academy of Sciences.

[10]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[11]  Michael D. Cole,et al.  Upregulation of c-MYC in cis through a Large Chromatin Loop Linked to a Cancer Risk-Associated Single-Nucleotide Polymorphism in Colorectal Cancer Cells , 2010, Molecular and Cellular Biology.

[12]  E. Campo,et al.  Common variants at 2q37.3, 8q24.21, 15q21.3, and 16q24.1 influence chronic lymphocytic leukemia risk , 2010, Nature Genetics.

[13]  J. Houwing-Duistermaat,et al.  Enrichment of Low Penetrance Susceptibility Loci in a Dutch Familial Colorectal Cancer Cohort , 2009, Cancer Epidemiology, Biomarkers & Prevention.

[14]  Ali Amin Al Olama,et al.  Multiple loci on 8q24 associated with prostate cancer susceptibility , 2009, Nature Genetics.

[15]  A. Visel,et al.  Genomic Views of Distant-Acting Enhancers , 2009, Nature.

[16]  M. Pelizzo,et al.  The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors , 2009, PLoS genetics.

[17]  D. Reich,et al.  Functional Enhancers at the Gene-Poor 8q24 Cancer-Linked Locus , 2009, PLoS genetics.

[18]  Esko Ukkonen,et al.  The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling , 2009, Nature Genetics.

[19]  P. Kantoff,et al.  Evaluation of the 8q24 prostate cancer risk locus and MYC expression. , 2009, Cancer research.

[20]  P. Broderick,et al.  The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. , 2009, Genome research.

[21]  M. Zannini,et al.  The DREAM protein is associated with thyroid enlargement and nodular development. , 2009, Molecular endocrinology.

[22]  S. Weinstein,et al.  Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility , 2009, Proceedings of the National Academy of Sciences.

[23]  Giske Ursin,et al.  FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. , 2009, Human molecular genetics.

[24]  J. Carpten,et al.  Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. , 2009, Human molecular genetics.

[25]  Kari Stefansson,et al.  Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations , 2009, Nature Genetics.

[26]  N. Camp,et al.  Meta Association of Colorectal Cancer Confirms Risk Alleles at 8q24 and 18q21 , 2009, Cancer Epidemiology Biomarkers & Prevention.

[27]  H. Duan,et al.  Functional long-range interactions of the IgH 3′ enhancers with the bcl-2 promoter region in t(14;18) lymphoma cells , 2008, Oncogene.

[28]  Steven Gallinger,et al.  Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer , 2008, Nature Genetics.

[29]  Tony Fletcher,et al.  Sequence variant on 8q24 confers susceptibility to urinary bladder cancer , 2008, Nature Genetics.

[30]  Olufunmilayo I Olopade,et al.  MYC in breast tumor progression , 2008, Expert review of anticancer therapy.

[31]  Karin M. Fredrikson,et al.  Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers , 2008, Human Genetics.

[32]  S. Carroll Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution , 2008, Cell.

[33]  John L Hopper,et al.  Multiple loci with different cancer specificities within the 8q24 gene desert. , 2008, Journal of the National Cancer Institute.

[34]  B. Ponder,et al.  Allele-Specific Up-Regulation of FGFR2 Increases Susceptibility to Breast Cancer , 2008, PLoS biology.

[35]  Zanke,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21 , 2008, Nature Genetics.

[36]  Julian Peto,et al.  A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3 , 2008, Nature Genetics.

[37]  W. Willett,et al.  Multiple loci identified in a genome-wide association study of prostate cancer , 2008, Nature Genetics.

[38]  Ali Amin Al Olama,et al.  Multiple newly identified loci associated with prostate cancer susceptibility , 2008, Nature Genetics.

[39]  Oliver Sieber,et al.  A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk , 2007, Nature Genetics.

[40]  J. Brooks,et al.  Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. , 2007, Cancer research.

[41]  Oliver Sieber,et al.  A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21 , 2007, Nature Genetics.

[42]  David Reich,et al.  A common genetic risk factor for colorectal and prostate cancer , 2007, Nature Genetics.

[43]  Steven Gallinger,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24 , 2007, Nature Genetics.

[44]  M. Bollen,et al.  The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2 , 2007, Oncogene.

[45]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[46]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[47]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[48]  D. Gudbjartsson,et al.  Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24 , 2007, Nature Genetics.

[49]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[50]  H. Duan,et al.  The immunoglobulin heavy-chain gene 3′ enhancers deregulate bcl-2 promoter usage in t(14;18) lymphoma cells , 2007, Oncogene.

[51]  A. Whittemore,et al.  Multiple regions within 8q24 independently affect risk for prostate cancer , 2007, Nature Genetics.

[52]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[53]  J. R. Reeves,et al.  Prognostic Value of Prostate Secretory Protein of 94 Amino Acids and its Binding Protein after Radical Prostatectomy , 2006, Clinical Cancer Research.

[54]  C. V. Jongeneel,et al.  Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data , 2006, Breast Cancer Research.

[55]  A. Gylfason,et al.  A common variant associated with prostate cancer in European and African populations , 2006, Nature Genetics.

[56]  V. Srikantan,et al.  Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome , 2006, Oncogene.

[57]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[58]  C. Hill,et al.  Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. , 2006, Cytokine & growth factor reviews.

[59]  Michael C O'Donovan,et al.  Strong bias in the location of functional promoter polymorphisms , 2005, Human mutation.

[60]  Lothar Hennighausen,et al.  Information networks in the mammary gland , 2005, Nature Reviews Molecular Cell Biology.

[61]  J. Wysolmerski,et al.  Key stages of mammary gland development: Molecular mechanisms involved in the formation of the embryonic mammary gland , 2005, Breast Cancer Research.

[62]  Yun-Fai Chris Lau,et al.  Unopposed c‐MYC expression in benign prostatic epithelium causes a cancer phenotype , 2005, The Prostate.

[63]  Ralf Küppers,et al.  Mechanisms of B-cell lymphoma pathogenesis , 2005, Nature Reviews Cancer.

[64]  H. Duan,et al.  Histone Deacetylase Inhibitors Down-Regulate bcl-2 Expression and Induce Apoptosis in t(14;18) Lymphomas , 2005, Molecular and Cellular Biology.

[65]  A. Affuso,et al.  An integrated regulatory network controlling survival and migration in thyroid organogenesis. , 2004, Developmental biology.

[66]  Tien Hsu,et al.  Ets proteins in biological control and cancer , 2004, Journal of cellular biochemistry.

[67]  A. Feinberg,et al.  The history of cancer epigenetics , 2004, Nature Reviews Cancer.

[68]  M. Krajnc-Franken,et al.  Impaired Nipple Development and Parturition in LGR7 Knockout Mice , 2004, Molecular and Cellular Biology.

[69]  M. Nóbrega,et al.  Scanning Human Gene Deserts for Long-Range Enhancers , 2003, Science.

[70]  Denis Duboule,et al.  A Global Control Region Defines a Chromosomal Regulatory Landscape Containing the HoxD Cluster , 2003, Cell.

[71]  W. Isaacs,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Pathological and Molecular Aspects of Prostate Cancer Prostate Cancer Ii , 2022 .

[72]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[73]  B. Jasani,et al.  Thyroid transcription factor-2 gene expression in benign and malignant thyroid lesions. , 2001, Thyroid : official journal of the American Thyroid Association.

[74]  H. Clevers,et al.  Linking Colorectal Cancer to Wnt Signaling , 2000, Cell.

[75]  M. Dyer,et al.  The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. , 2000, Blood.

[76]  F. Mitelman,et al.  Recurrent chromosome aberrations in cancer. , 2000, Mutation research.

[77]  L. Hood,et al.  Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. , 1999, Cancer research.

[78]  E. Prochownik,et al.  MYC oncogenes and human neoplastic disease , 1999, Oncogene.

[79]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[80]  B. Desoize Anticancer drug resistance and inhibition of apoptosis. , 1994, Anticancer research.

[81]  J. Rossant,et al.  Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. , 1989, Development.

[82]  D. Clair,et al.  Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder , 2011, Molecular Psychiatry.

[83]  Peter A. Jones,et al.  Epigenetics in cancer. , 2010, Carcinogenesis.

[84]  L. Tanoue Cancer Statistics, 2009 , 2010 .

[85]  A. Chinnaiyan,et al.  Recurrent gene fusions in prostate cancer , 2008, Nature Reviews Cancer.

[86]  M. Katoh Cancer genomics and genetics of FGFR2 (Review). , 2008, International journal of oncology.

[87]  I. Wierstra,et al.  The c-myc promoter: still MysterY and challenge. , 2008, Advances in cancer research.

[88]  C. Hill,et al.  New insights into TGF-beta-Smad signalling. , 2004, Trends in biochemical sciences.

[89]  Yang Wang,et al.  An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells. , 2002, The American journal of pathology.

[90]  A. Khamlichi,et al.  The 3' IgH regulatory region: a complex structure in a search for a function. , 2000, Advances in immunology.

[91]  Martin J. S. Dyer,et al.  Chromosomal translocations in cancer , 1996 .

[92]  B. Herrmann,et al.  Detection of messenger RNA by in situ hybridization to postimplantation embryo whole mounts. , 1993, Methods in enzymology.