Snf1--a Histone Kinase That Works in Concert with the Histone Acetyltransferase Gcn5 to Regulate Transcription

Modification of histones is an important element in the regulation of gene expression. Previous work suggested a link between acetylation and phosphorylation, but questioned its mechanistic basis. We have purified a histone H3 serine-10 kinase complex fromSaccharomyces cerevisiae and have identified its catalytic subunit as Snf1. The Snf1/AMPK family of kinases function in conserved signal transduction pathways. Our results show that Snf1 and the acetyltransferase Gcn5 function in an obligate sequence to enhanceINO1 transcription by modifying histone H3 serine-10 and lysine-14. Thus, phosphorylation and acetylation are targeted to the same histone by promoter-specific regulation by a kinase/acetyltransferase pair, supporting models of gene regulation wherein transcription is controlled by coordinated patterns of histone modification.

[1]  S. Berger,et al.  The Histone Modification Circus , 2001, Science.

[2]  J. Hayes,et al.  Nucleosomes and the chromatin fiber. , 2001, Current opinion in genetics & development.

[3]  D. Glover,et al.  Drosophila Aurora B Kinase Is Required for Histone H3 Phosphorylation and Condensin Recruitment during Chromosome Condensation and to Organize the Central Spindle during Cytokinesis , 2001, The Journal of cell biology.

[4]  B M Turner,et al.  Histone acetylation and an epigenetic code. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  C. Ponting,et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases , 2000, Nature.

[6]  Zu-Wen Sun,et al.  Mitotic Phosphorylation of Histone H3 Is Governed by Ipl1/aurora Kinase and Glc7/PP1 Phosphatase in Budding Yeast and Nematodes , 2000, Cell.

[7]  M. J. Barratt,et al.  Phosphoacetylation of histone H3 on c‐fos‐ and c‐jun‐associated nucleosomes upon gene activation , 2000, The EMBO journal.

[8]  C. Allis,et al.  Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. , 2000, Molecular cell.

[9]  S. Berger,et al.  Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. , 2000, Molecular cell.

[10]  P. Grant,et al.  The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. , 2000, Genes & development.

[11]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[12]  J. Workman,et al.  The many HATs of transcription coactivators. , 2000, Trends in biochemical sciences.

[13]  John R. Yates,et al.  The ADA Complex Is a Distinct Histone Acetyltransferase Complex in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[14]  P. Grant,et al.  NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM‐related cofactor Tra1p , 1999, The EMBO journal.

[15]  M. Inagaki,et al.  Identification of a Novel Phosphorylation Site on Histone H3 Coupled with Mitotic Chromosome Condensation* , 1999, The Journal of Biological Chemistry.

[16]  M. J. Barratt,et al.  The nucleosomal response associated with immediate‐early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG‐14 kinase , 1999, The EMBO journal.

[17]  C. Allis,et al.  Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. , 1999, Science.

[18]  K. Arndt,et al.  Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. , 1999, Genetics.

[19]  M. Carlson,et al.  Glucose repression in yeast. , 1999, Current opinion in microbiology.

[20]  Kevin Struhl,et al.  The TAFs in the HAT , 1998, Cell.

[21]  C. Allis,et al.  Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. , 1998, Genes & development.

[22]  S. Berger,et al.  Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. , 1998, Genes & development.

[23]  M. Carlson,et al.  The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? , 1998, Annual review of biochemistry.

[24]  C. Peterson,et al.  Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression , 1997, Molecular and cellular biology.

[25]  F. Winston,et al.  Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. , 1997, Genetics.

[26]  R Ohba,et al.  Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. , 1997, Genes & development.

[27]  J. Scott,et al.  Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. , 1994, The Journal of biological chemistry.

[28]  E. Bradbury,et al.  Reversible histone modification and the chromosome cell cycle , 1992 .

[29]  Anthony C. Willis,et al.  Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors , 1991, Cell.