Calligraphic poling for WGM resonators

By engineering the geometry of a nonlinear optical crystal, the effective efficiency of all nonlinear optical oscillations can be increased dramatically. Specifically, sphere and disk shaped crystal resonators have been used to demonstrate nonlinear optical oscillations at sub-miliwatt input power when cw light propagates in a Whispering Gallery Mode (WGM) of such a resonant cavity. In terms of both device production and experimentation in quantum optics, some nonlinear optical effects with naturally high efficiency can occult the desired nonlinear scattering process. The efficiency of second order nonlinear optical effects in ferroelectric crystals can be increased by engineering a poling structure to the crystal resonator. In this paper, I will discuss a new method for generating poling structures in ferroelectric crystal resonators called calligraphic poling. The details of the poling apparatus, experimental results, and speculation on future applications will be discussed.

[1]  Vladimir S. Ilchenko,et al.  Reconfigurable optical filter , 2005 .

[2]  Lute Maleki,et al.  Calligraphic poling of Lithium Niobate. , 2005, Optics express.

[3]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[4]  Pietro Ferraro,et al.  Surface topography of microstructures in lithium niobate by digital holographic microscopy , 2004 .

[5]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[6]  R. E. Prange Conditions for charge fractionalization , 1982 .

[7]  P. D. Townsend,et al.  An introduction to methods of periodic poling for second-harmonic generation , 1995 .

[8]  Ross,et al.  Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal , 2000, Physical review letters.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[11]  Karsten Buse,et al.  Visualization of ferroelectric domains with coherent light. , 2003, Optics letters.

[12]  Myoungsik Cha,et al.  Periodic Poling in 3-mm-Thick MgO:LiNbO3 Crystals , 2003 .

[13]  M. Yamada,et al.  domains in lithium niobate crystals and its application devices , 2000 .

[14]  M. Fejer,et al.  Quasi‐phase‐matched second‐harmonic generation of blue light in periodically poled LiNbO3 , 1990 .

[15]  Martin M. Fejer,et al.  Nanoscale backswitched domain patterning in lithium niobate , 2000 .

[16]  Martin M. Fejer,et al.  Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation , 1999 .

[17]  D. Jundt,et al.  Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate. , 1997, Optics letters.

[18]  Thomas Coudreau,et al.  Generation of bright squeezed light at 1.06 mm using cascaded nonlinearities in a triply resonant cw periodically-poled lithium niobate optical parametric oscillator , 2001 .

[19]  Karsten Buse,et al.  Electrical fixing in near-stoichiometric lithium niobate crystals. , 2004, Optics letters.

[20]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[21]  Vladimir S. Ilchenko,et al.  Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes , 2003 .

[22]  W. J. Kozlovsky,et al.  Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide , 1989 .