Choroidal Vascularity Index (CVI) - A Novel Optical Coherence Tomography Parameter for Monitoring Patients with Panuveitis?

Purpose To compute choroidal vascularity index (CVI) using an image binarization tool on enhanced depth imaging (EDI)-optical coherence tomography (OCT) scans as a non-invasive optical tool to monitor progression in panuveitis and to investigate the utility of volumetric data from EDI-OCT scans using custom image analysis software. Materials and Methods In this retrospective cohort study, segmented EDI-OCT scans of both eyes in 19 patients with panuveitis were taken at baseline and at 3-month follow-up and were compared with EDI-OCT scans of normal eyes. Subfoveal choroidal area was segmented into luminal (LA) and stromal interstitial area (SA). Choroidal vascularity index (CVI) was defined as the proportion of LA to the total circumscribed subfoveal choroidal area (TCA). Results The mean choroidal thickness was 265.5±100.1μm at baseline and 278.4±102.6μm at 3 months follow up (p = 0.06). There was no statistically significant difference in TCA between study and control eyes (p = 0.08). CVI in the control group was 66.9±1.5% at baseline and 66.4±1.5% at follow up. CVI was 74.1±4.7% at baseline and 69.4±4.8% at 3 months follow up for uveitic eyes (p<0.001). The % change in CVI was 6.2 ±3.8 (4.3 to 8.0) for uveitic eyes, which was significantly higher from % change in CVI for control eyes (0.7±1.1, 0.2 to 1.3, p<0.001). Conclusion The study reports composite OCT-derived parameters and CVI as a possible novel tool in monitoring progression in panuveitis. CVI may be further validated in larger studies as a novel optical tool to quantify choroidal vascular status.

[1]  Ching-Yu Cheng,et al.  A Simplified Method to Measure Choroidal Thickness Using Adaptive Compensation in Enhanced Depth Imaging Optical Coherence Tomography , 2014, PloS one.

[2]  Sirinivas R. Sadda,et al.  Choroidal atrophy and loss of choriocapillaris in convalescent stage of Vogt-Koyanagi-Harada disease: in vivo documentation , 2014, Journal of Ophthalmic Inflammation and Infection.

[3]  R. Spaide The choroid and vision loss. , 2014, American journal of ophthalmology.

[4]  L. Sobrin,et al.  Role of OCT in the Diagnosis and Management of Macular Edema from Uveitis , 2012, Seminars in ophthalmology.

[5]  Sumohana S. Channappayya,et al.  An automated algorithm for blood vessel count and area measurement in 2-D choroidal scan images , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[6]  S. Sudharshan,et al.  Current approach in the diagnosis and management of posterior uveitis , 2010, Indian journal of ophthalmology.

[7]  Flower Rw,et al.  An ICG angiogram-based clinical method for characterizing the choroidal circulation used to assess the hemorrheologic effects of pentoxifylline. , 2000 .

[8]  G S Baarsma,et al.  The epidemiology and genetics of endogenous uveitis: a review. , 1992, Current eye research.

[9]  M. Accorinti,et al.  Endogenous uveitis: an analysis of 1,417 cases. , 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[10]  Y. Ikuno,et al.  Choroidal thickness in healthy Japanese subjects. , 2010, Investigative ophthalmology & visual science.

[11]  R. Spaide,et al.  A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. , 2009, American journal of ophthalmology.

[12]  P. Neri,et al.  Optical coherence tomography imaging in uveitis , 2014, International Ophthalmology.

[13]  C. Foster,et al.  The characteristic features of optical coherence tomography in posterior uveitis , 2007, British Journal of Ophthalmology.

[14]  A. Tufail,et al.  ICG angiography and uveitis , 2004, Ocular immunology and inflammation.

[15]  G. Zararsiz,et al.  Evaluation of the Macular, Peripapillary Nerve Fiber Layer and Choroid Thickness Changes in Behçet's Disease with Spectral-Domain OCT , 2014, Journal of ophthalmology.

[16]  Xiaoyan Ding,et al.  Choroidal thickness in healthy Chinese subjects. , 2011, Investigative ophthalmology & visual science.

[17]  P. Keane,et al.  Choroidal assessment in idiopathic panuveitis using optical coherence tomography , 2013, Graefe's Archive for Clinical and Experimental Ophthalmology.

[18]  U. Pleyer,et al.  New pharmacotherapy options for noninfectious posterior uveitis , 2014, Expert opinion on biological therapy.

[19]  Amani A. Fawzi,et al.  A Pilot Study of Morphometric Analysis of Choroidal Vasculature In Vivo, Using En Face Optical Coherence Tomography , 2012, PloS one.

[20]  M. Araki,et al.  [Observations on the corrosion casts of the retinal capillary bed at the posterior pole and the capillaries of the optic disc: normal and glaucomatous eye (author's transl)]. , 1977, Nippon Ganka Gakkai zasshi.

[21]  Q. Nguyen,et al.  Variation of choroidal thickness and vessel diameter in patients with posterior non-infectious uveitis , 2014, Journal of Ophthalmic Inflammation and Infection.

[22]  F. Dong,et al.  [Choroidal thickness in normal subjects measured by enhanced depth imaging optical coherence tomography]. , 2012, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology.

[23]  P. Mahendradas,et al.  Combined depth imaging of choroid in uveitis , 2014, Journal of Ophthalmic Inflammation and Infection.

[24]  S S Hayreh,et al.  Segmental nature of the choroidal vasculature. , 1975, The British journal of ophthalmology.

[25]  Huba J. M. Kiss,et al.  Retinal and choroidal thickness measurements using spectral domain optical coherence tomography in anterior and intermediate uveitis , 2014, BMC Ophthalmology.

[26]  Cecilia S Lee,et al.  Immunopharmacotherapy of non-infectious uveitis: where do we stand? , 2014, Expert opinion on biological therapy.

[27]  P. Keane,et al.  Characterization of birdshot chorioretinopathy using extramacular enhanced depth optical coherence tomography. , 2013, JAMA ophthalmology.

[28]  A E Maumenee,et al.  Fluorescein angiography of the choriocapillaris. , 1969, American journal of ophthalmology.

[29]  R. Agrawal,et al.  Indocyanine green angiography in posterior uveitis , 2013, Indian journal of ophthalmology.

[30]  Rupesh Agrawal,et al.  Luminal and Stromal Areas of Choroid Determined by Binarization Method of Optical Coherence Tomographic Images. , 2015, American journal of ophthalmology.

[31]  R. E. Smith,et al.  Changing patterns of uveitis. , 1987, American journal of ophthalmology.

[32]  R. Spaide,et al.  Enhanced depth imaging spectral-domain optical coherence tomography. , 2008, American journal of ophthalmology.

[33]  D. S. Mcleod,et al.  High-resolution histologic analysis of the human choroidal vasculature. , 1994, Investigative ophthalmology & visual science.

[34]  Elham Hatef,et al.  Wide-field retinal imaging in the management of noninfectious posterior uveitis. , 2012, American journal of ophthalmology.

[35]  Kaivon L Pakzad-Vaezi,et al.  Optical coherence tomography in the diagnosis and management of uveitis. , 2014, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[36]  Y. Sakurai,et al.  Changes in subfoveal choroidal thickness associated with uveitis activity in patients with Behçet's disease , 2014, British Journal of Ophthalmology.

[37]  P A Keane,et al.  Imaging chorioretinal vascular disease , 2010, Eye.

[38]  Shozo Sonoda,et al.  Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. , 2014, Investigative ophthalmology & visual science.

[39]  James G Fujimoto,et al.  Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. , 2013, Ophthalmology.

[40]  P. Keane,et al.  Characterization of punctate inner choroidopathy using enhanced depth imaging optical coherence tomography. , 2014, Ophthalmology.

[41]  K. Freund,et al.  REDEFINING MULTIFOCAL CHOROIDITIS AND PANUVEITIS AND PUNCTATE INNER CHOROIDOPATHY THROUGH MULTIMODAL IMAGING , 2013, Retina.

[42]  R. Spaide,et al.  Imaging the Choroid in Uveitis , 2012, International ophthalmology clinics.

[43]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[44]  T. Wong,et al.  Distribution and determinants of choroidal thickness and volume using automated segmentation software in a population-based study. , 2015, American journal of ophthalmology.

[45]  S. Sadda,et al.  Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. , 2014, Ophthalmology.

[46]  J. Forrester Intermediate and posterior uveitis. , 2007, Chemical immunology and allergy.

[47]  V. Sakata,et al.  Enhanced depth imaging optical coherence tomography in long-standing Vogt–Koyanagi–Harada disease , 2011, British Journal of Ophthalmology.

[48]  Ziqiang Wu,et al.  Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading. , 2007, Investigative ophthalmology & visual science.

[49]  Y. Li,et al.  Optical Coherence Tomography and Histopathology of Macular Uveitis , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[50]  P. Keane,et al.  Quantitative subanalysis of optical coherence tomography after treatment with ranibizumab for neovascular age-related macular degeneration. , 2008, Investigative ophthalmology & visual science.

[51]  P. Lehoang,et al.  Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. , 1998, Ophthalmology.

[52]  S. Rahmani,et al.  Enhanced depth imaging OCT (EDI-OCT) findings in acute phase of sympathetic ophthalmia , 2015, International Ophthalmology.

[53]  Q. Nguyen,et al.  Fundus Autofluorescence Imaging in Posterior Uveitis , 2018 .

[54]  F. Gao,et al.  Spectral domain optical coherence tomography of Vogt-Koyanagi-Harada disease: novel findings and new insights into the pathogenesis. , 2012, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih.

[55]  Yoshiaki Yasuno,et al.  Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[56]  Paul G. Updike,et al.  Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration. , 2007, Investigative ophthalmology & visual science.