Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results

One main task in evolutionary multiobjective optimization (EMO) is to obtain a suitable finite size approximation of the Pareto front which is the image of the solution set, termed the Pareto set, of a given multiobjective optimization problem. In the technical literature, the characteristic of the desired approximation is commonly expressed by closeness to the Pareto front and a sufficient spread of the solutions obtained. In this paper, we first make an effort to show by theoretical and empirical findings that the recently proposed Averaged Hausdorff (or $$\Delta _p$$Δp-) indicator indeed aims at fulfilling both performance criteria for bi-objective optimization problems. In the second part of this paper, standard EMO algorithms combined with a specialized archiver and a postprocessing step based on the $$\Delta _p$$Δp indicator are introduced which sufficiently approximate the $$\Delta _p$$Δp-optimal archives and generate solutions evenly spread along the Pareto front.

[1]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[2]  Michael Dellnitz,et al.  A new approach for online multiobjective optimization of mechatronic systems , 2008, International Journal on Software Tools for Technology Transfer.

[3]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[4]  V. Pareto Manual of Political Economy: A Critical and Variorum Edition , 2014 .

[5]  Michael T. M. Emmerich,et al.  Cone-Based Hypervolume Indicators: Construction, Properties, and Efficient Computation , 2013, EMO.

[6]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[7]  G. Rudolph,et al.  Finding evenly spaced fronts for multiobjective control via averaging Hausdorff-measure , 2011, 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control.

[8]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[9]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[10]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[11]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[12]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[13]  Oliver Schütze,et al.  PSA - A New Scalable Space Partition Based Selection Algorithm for MOEAs , 2012, EVOLVE.

[14]  Kalyanmoy Deb,et al.  Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[15]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[16]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[17]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[18]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[19]  Claus Hillermeier,et al.  Nonlinear Multiobjective Optimization , 2001 .

[20]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[21]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  Günter Rudolph,et al.  Homogene Approximation der Paretofront bei mehrkriteriellen Kontrollproblemen , 2012, Autom..

[24]  Jing J. Liang,et al.  Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms , 2007 .

[25]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[26]  Michael T. M. Emmerich,et al.  On Quality Indicators for Black-Box Level Set Approximation , 2013, EVOLVE.

[27]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[28]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[29]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[30]  Günter Rudolph,et al.  Evenly Spaced Pareto Front Approximations for Tricriteria Problems Based on Triangulation , 2013, EMO.

[31]  Günter Rudolph,et al.  Evenly spaced Pareto fronts of quad-objective problems using PSA partitioning technique , 2013, 2013 IEEE Congress on Evolutionary Computation.

[32]  M. Dellnitz,et al.  Operating Point Assignment of a Linear Motor Driven Vehicle Using Multiobjective Optimization Methods , 2004 .

[33]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[34]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[35]  Günter Rudolph,et al.  Finding Evenly Spaced Pareto Fronts for Three-Objective Optimization Problems , 2012, EVOLVE.

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  G. Rudolph,et al.  Evolutionary Optimization of Dynamic Multi-objective Test Functions , 2006 .