New hyperbranched polyaryleneethynylene containing azobenzenechromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability

A new main-chain NLO hyperbranched polymer (P1) was first prepared through a simple synthetic route, which demonstrated much better NLO properties (d33 value up to 143.8 pm/V) than its corresponding linear analogue (P2), since the three-dimensional spatial isolation from the highly branched structure could greatly enhance the poling efficiency.

[1]  J. Qin,et al.  The role of introduced isolation groups in PVK-based nonlinear optical polymers: Enlarged nonlinearity, improved processibility, and enhanced thermal stability , 2009 .

[2]  J. Qin,et al.  Nonlinear Optical Dendrimers from Click Chemistry: Convenient Synthesis, New Function of the Formed Triazole Rings, and Enhanced NLO Effects , 2009 .

[3]  Zhiyu Wang,et al.  Molecular Design and Synthesis of Hetero-trichromophore for Enhanced Nonlinear Optical Activity , 2009 .

[4]  J. Qin,et al.  New Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB2 Monomers via Click Chemistry under Copper(I) Catalysis , 2009 .

[5]  H. Klok,et al.  Dendritic and hyperbranched polyamides , 2009 .

[6]  Larry R. Dalton,et al.  Recent progress in second-order nonlinear optical polymers and dendrimers , 2008 .

[7]  Jingdong Luo,et al.  Reinforced site isolation leading to remarkable thermal stability and high electrooptic activities in cross-linked nonlinear optical dendrimers , 2008 .

[8]  Raluca Dinu,et al.  Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss , 2008 .

[9]  Z. Cao,et al.  Synthesis and nonlinear optical properties of hyperbranched polytriazole containing second‐order nonlinear optical chromophore , 2008 .

[10]  Z. Cao,et al.  Synthesis and second-order nonlinear optical properties of hyperbranched polymers containing pendant azobenzene chromophores , 2007 .

[11]  J. Qin,et al.  Novel second-order nonlinear optical main-chain polyurethanes: Adjustable subtle structure, improved thermal stability and enhanced nonlinear optical property , 2007 .

[12]  S. Dai,et al.  Second-order nonlinear optical hyperbranched polymers via facile ring-opening addition reaction of azetidine-2,4-dione , 2007 .

[13]  J. Qin,et al.  Convenient attachment of highly polar azo chromophore moieties to disubstituted polyacetylene through polymer reactions by using click chemistry , 2007 .

[14]  Jingdong Luo,et al.  Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. , 2007, Journal of the American Chemical Society.

[15]  B. Tang,et al.  Functional Hyperbranched Macromolecules Constructed from Acetylenic Triple-Bond Building Blocks , 2007 .

[16]  J. Qin,et al.  An Attempt To Modify Nonlinear Optical Effects of Polyurethanes by Adjusting the Structure of the Chromophore Moieties at the Molecular Level Using “Click” Chemistry , 2006 .

[17]  J. Qin,et al.  New hyperbranched polymers containing second-order nonlinear optical chromophores: Synthesis and nonlinear optical characterization , 2006 .

[18]  J. Qin,et al.  Structural Control of the Side-Chain Chromophores To Achieve Highly Efficient Nonlinear Optical Polyurethanes , 2006 .

[19]  Ben Zhong Tang,et al.  Facile Synthesis, Large Optical Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores , 2006 .

[20]  Yongqiang Dong,et al.  Functionalization of Disubstituted Polyacetylenes through Polymer Reactions: Syntheses of Functional Poly(1-phenyl-1-alkyne)s , 2006 .

[21]  L. Dalton,et al.  Novel dendritic chromophores for electro-optics: Influence of binding mode and attachment flexibility on electro-optic behavior , 2006 .

[22]  J. Ju,et al.  Polyester Dendrimers Carrying NLO Chromophores: Synthesis and Optical Characterization , 2005 .

[23]  Ben Zhong Tang,et al.  A New Route to Hyperbranched Macromolecules: Syntheses of Photosensitive Poly(aroylarylene)s via 1,3,5-Regioselective Polycyclotrimerization of Bis(aroylacetylene)s , 2005 .

[24]  Xiaomei Wang,et al.  A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant. , 2005, Journal of the American Chemical Society.

[25]  Kimberly A. Firestone,et al.  RETRACTED: Advances in organic electro-optic materials and processing , 2004 .

[26]  J. Grazul,et al.  Star-shaped azo-based dipolar chromophores: design, synthesis, matrix compatibility, and electro-optic activity. , 2004, Journal of the American Chemical Society.

[27]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology , 2003 .

[28]  Suntak Park,et al.  Improved Electro‐Optic Effect by Hyperbranched Chromophore Structures in Side‐Chain Polyimide , 2003 .

[29]  Francois Kajzar,et al.  Polymeric Materials and their Orientation Techniques for Second-Order Nonlinear Optics , 2003 .

[30]  Joerg Heber,et al.  Broadband Modulation of Light by Using an Electro-Optic Polymer , 2002, Science.

[31]  Larry R. Dalton,et al.  Highly Efficient and Thermally Stable Electro‐Optical Dendrimers for Photonics , 2002 .

[32]  Jean M. J. Fréchet,et al.  Dendrimers and supramolecular chemistry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Haag,et al.  Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. , 2002, Angewandte Chemie.

[34]  P. Busson,et al.  Preparation of Mesogen-Functionalized Dendrimers for Second-Order Nonlinear Optics , 2002 .

[35]  Hong Ma,et al.  Functional Dendrimers for Nonlinear Optics , 2001 .

[36]  G. Hsiue,et al.  Enhanced Temporal Stability of an NLO Polyurethane via a Two‐Dimensional Chromophore , 2001 .

[37]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[38]  H. Frey,et al.  Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. , 2000, Chemistry.

[39]  Brigitte Voit,et al.  New developments in hyperbranched polymers , 2000 .

[40]  Liming Wang,et al.  Development of fully functionalized photorefractive polymers , 2000 .

[41]  Bruce H. Robinson,et al.  Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials† , 2000 .

[42]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[43]  T. Goodson,et al.  Large Nonlinear Refraction and Higher Order Nonlinear Optical Effects in a Novel Organic Dendrimer , 2000 .

[44]  S. Mashiko,et al.  Intermolecular coupling enhancement of the molecular hyperpolarizability in multichromophoric dipolar dendrons , 2000 .

[45]  Antao Chen,et al.  The molecular and supramolecular engineering of polymeric electro-optic materials , 1999 .

[46]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[47]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[48]  Y. H. Kim,et al.  Hyperbranched polymers 10 years after , 1998 .

[49]  Antao Chen,et al.  Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions , 1998 .

[50]  A. Jen,et al.  Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications , 1997, Nature.

[51]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[52]  H. Sasabe,et al.  Synthesis and Characterization of Polymers Containing in the Chain Backbone Carbazoles Substituted with Two Acceptor Groups as Nonlinear Optical Chromophores , 1996 .

[53]  R. B. Grubbs,et al.  Self-Condensing Vinyl Polymerization: An Approach to Dendritic Materials , 1995, Science.

[54]  Mark A. Ratner,et al.  Design, Synthesis, and Properties of Molecule‐Based Assemblies with Large Second‐Order Optical Nonlinearities , 1995 .

[55]  Donald M. Burland,et al.  SECOND-ORDER NONLINEARITY IN POLED-POLYMER SYSTEMS , 1994 .

[56]  David J. Williams,et al.  Dielectric relaxation study of some novel polymers for nonlinear optics , 1991 .