Electric field-controlled reversible high-temperature perpendicular magnetic anisotropy in cobaltate–manganite heterostructures

The abnormal high-temperature perpendicular magnetic anisotropy of the LSMO layer and electric field-controlled reversible tuning of the perpendicular magnetic anisotropy in its bilayer have been studied.

[1]  Guowei Zhou,et al.  Electric-Field Reversible Switching of the Exchange Spring and Exchange Bias Effect in SrCoO3-x/La0.7Sr0.3MnO3 Heterostructures. , 2021, ACS applied materials & interfaces.

[2]  Jun Zhang,et al.  Spontaneous positive exchange bias effect in SrFeO3−x/SrCoO3−x epitaxial bilayer , 2020, Rare Metals.

[3]  Xiaohong Xu,et al.  Reversible control of magnetic and transport properties of NdNiO3– epitaxial films , 2020 .

[4]  Yi-sheng Liu,et al.  Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer , 2020, Science Advances.

[5]  Hui Xu,et al.  Anisotropic magnetoresistance and nonvolatile memory in superlattices of La2/3Sr1/3MnO3 and antiferromagnet Sr2IrO4 , 2020, Journal of Materials Science.

[6]  Muhammad Akhyar Farrukh,et al.  Perpendicular magnetic anisotropy in compressive strained La0.67Sr0.33MnO3 films , 2019, Journal of Materials Science.

[7]  F. Pan,et al.  Oxygen-Valve Formed in Cobaltite-Based Heterostructures by Ionic Liquid and Ferroelectric Dual-Gating. , 2019, ACS applied materials & interfaces.

[8]  Qinghua Zhang,et al.  Electronic structure evolutions driven by oxygen vacancy in SrCoO3−x films , 2019, Science China Materials.

[9]  Jirong Sun,et al.  Interfacial coupling-induced distinct magnetic structure in La1/2Sr1/2CoO2.5+δ/La2/3Sr1/3MnO3/ La1/2Sr1/2CoO2.5+δ heterostructure , 2019, AIP Advances.

[10]  Geoffrey S. D. Beach,et al.  Magneto-ionic control of magnetism using a solid-state proton pump , 2018, Nature Materials.

[11]  Qinghua Zhang,et al.  Magnetic Anisotropy Controlled by Distinct Interfacial Lattice Distortions at the La1- xSr xCoO3/La2/3Sr1/3MnO3 Interfaces. , 2018, ACS applied materials & interfaces.

[12]  P. Werner,et al.  Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures , 2018, Nature Communications.

[13]  Wei Chen,et al.  Ionic Liquid Gating Control of Spin Reorientation Transition and Switching of Perpendicular Magnetic Anisotropy , 2018, Advanced materials.

[14]  F. Hu,et al.  Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures , 2018, Nature Communications.

[15]  Z. Liao,et al.  Interface-engineered oxygen octahedral coupling in manganite heterostructures , 2017 .

[16]  Qinghua Zhang,et al.  Electric-field control of tri-state phase transformation with a selective dual-ion switch , 2017, Nature.

[17]  Jingsheng Chen,et al.  Magnetization reversal and magnetoresistance behavior of exchange coupled SrRuO3 bilayer , 2017 .

[18]  H. Kurata,et al.  Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. , 2016, Nature materials.

[19]  K. Held,et al.  Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. , 2016, Nature materials.

[20]  Xiang Gao,et al.  Symmetry‐Driven Atomic Rearrangement at a Brownmillerite–Perovskite Interface , 2015, 1511.06405.

[21]  F. Zeng,et al.  Electrical Manipulation of Orbital Occupancy and Magnetic Anisotropy in Manganites , 2014, 1411.7128.

[22]  C. M. Folkman,et al.  Reversible redox reactions in an epitaxially stabilized SrCoO(x) oxygen sponge. , 2013, Nature materials.

[23]  H. N. Lee,et al.  Topotactic Phase Transformation of the Brownmillerite SrCoO2.5 to the Perovskite SrCoO3–δ , 2013, Advanced materials.

[24]  E. Magnano,et al.  Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films , 2012, Nature Communications.

[25]  S. Cheong,et al.  Magnetic anisotropy of doped manganite thin films and crystals , 1998 .

[26]  M. Koizumi,et al.  The effect of oxygen vacancy on the magnetic properties in the system SrCoO3−δ (0 < δ < 0.5) , 1979 .