Caenorhabditis elegans and the study of gene function in parasites.

The free-living nematode Caenorhabditis elegans is a tractable experimental model system for the study of both vertebrate and invertebrate biology. Its most significant advantages are its simplicity, both in anatomy and in genomic organization, and the elaborate methods that have been developed to attribute function to previously uncharacterized genes. Importantly, > 40% of parasitic nematode genes exhibit high levels of homology to genes within the C. elegans genome. Studying such genes using the C. elegans model should yield new insights into key molecules and their possible implications in parasite survival, leading to the discovery of new drug targets and vaccine candidates.

[1]  J. Freedman,et al.  Aspartic Proteases from the Nematode Caenorhabditis elegans , 2000, The Journal of Biological Chemistry.

[2]  K. Mehta,et al.  Transglutaminase-catalyzed incorporation of host proteins in Brugia malayi microfilariae. , 1996, Molecular and biochemical parasitology.

[3]  C. Larminie,et al.  Isolation and characterization of four developmentally regulated cathepsin B-like cysteine protease genes from the nematode Caenorhabditis elegans. , 1996, DNA and cell biology.

[4]  R. Martin,et al.  Target sites of anthelmintics , 1997, Parasitology.

[5]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[6]  W. F. Gregory,et al.  Identification of tgh-2, a Filarial Nematode Homolog of Caenorhabditis elegans daf-7 and Human Transforming Growth Factor β, Expressed in Microfilarial and Adult Stages of Brugia malayi , 2000, Infection and Immunity.

[7]  M. Chalfie,et al.  Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity , 1989, The Journal of cell biology.

[8]  J. Daub,et al.  Analysis of Genes Expressed at the Infective Larval Stage Validates Utility of Litomosoides sigmodontis as a Murine Model for Filarial Vaccine Development , 2000, Infection and Immunity.

[9]  J. McKerrow,et al.  Cloning of a Cysteine Protease Required for the Molting of Onchocerca volvulus Third Stage Larvae* , 1996, The Journal of Biological Chemistry.

[10]  A. Prince,et al.  Characterization of an Onchocerca volvulus cDNA clone encoding a genus specific antigen present in infective larvae and adult worms. , 1991, Molecular and biochemical parasitology.

[11]  J. McKerrow,et al.  Gut-specific and developmental expression of a Caenorhabditis elegans cysteine protease gene. , 1992, Molecular and biochemical parasitology.

[12]  R. Maizels,et al.  Toxocara canis: genes expressed by the arrested infective larval stage of a parasitic nematode. , 2000, International journal for parasitology.

[13]  S. Lustigman,et al.  Characterization of an Onchocerca volvulus L3-specific larval antigen, Ov-ALT-1. , 1998, Molecular and biochemical parasitology.

[14]  William B. Wood,et al.  1 Introduction to C. elegans Biology , 1988 .

[15]  D. Cooper,et al.  Comparison of collagen gene sequences in Ascaris suum and Caenorhabditis elegans. , 1989, Molecular and biochemical parasitology.

[16]  F. Perler,et al.  Cloning and expression of DiT33 from Dirofilaria immitis: a specific and early marker of heartworm infection , 1996, Parasitology.

[17]  R. Maizels,et al.  Vaccination against helminth parasites ‐ the ultimate challenge for vaccinologists? , 1999, Immunological reviews.

[18]  A. Coulson,et al.  RNAi--prospects for a general technique for determining gene function. , 2000, Parasitology today.

[19]  R. Lucius,et al.  The filarial antigens Av33/Ov33-3 show striking similarities to the major pepsin inhibitor from Ascaris suum. , 1993, Molecular and biochemical parasitology.

[20]  D. Pritchard,et al.  Cuticular collagens - a concealed target for immune attack in hookworms. , 1988, Parasitology today.

[21]  L. Tetley,et al.  cut-1-like genes are present in the filarial nematodes, Brugia pahangi and Brugia malayi, and, as in other nematodes, code for components of the cuticle. , 1999, Molecular and biochemical parasitology.

[22]  N. Sangster,et al.  Pharmacology of anthelmintic resistance , 1996, Parasitology.

[23]  J. Schaeffer,et al.  Immunoaffinity purification of avermectin-binding proteins from the free-living nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster. , 1994, The Biochemical journal.

[24]  J A Dent,et al.  The genetics of ivermectin resistance in Caenorhabditis elegans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. H. Wolfe,et al.  Proteinases and associated genes of parasitic helminths. , 1999, Advances in parasitology.

[26]  J. McKerrow,et al.  Identification of promoter elements of parasite nematode genes in transgenic Caenorhabditis elegans. , 1999, Molecular and biochemical parasitology.

[27]  R. Plasterk,et al.  Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Grant,et al.  New genetic and practical implications of selection for anthelmintic resistance in parasitic nematodes , 1995 .

[29]  E. Lacey The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. , 1988, International journal for parasitology.

[30]  M. Otsen,et al.  EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages. , 2000, Molecular and biochemical parasitology.

[31]  J. Barry,et al.  Cuticular collagen genes from the parasitic nematode Ostertagia circumcincta. , 1996, Molecular and biochemical parasitology.

[32]  M. Kwa,et al.  Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in β-tubulin isotype 1 , 1994 .

[33]  R. Fetterer,et al.  The in vitro uptake and incorporation of hemoglobin by adult Haemonchus-contortus. , 1997, Veterinary parasitology.

[34]  J. McKerrow,et al.  Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus. , 1992, The Journal of biological chemistry.

[35]  T. Tree,et al.  The novel cuticular collagen Ovcol-1 of Onchocerca volvulus is preferentially recognized by immunoglobulin G3 from putatively immune individuals , 1997, Infection and immunity.

[36]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[37]  R. Lucius,et al.  Acanthocheilonema viteae: characterization of a molt-associated excretory/secretory 18-kDa protein. , 1999, Experimental parasitology.

[38]  J. Bradley,et al.  Characterization of a putative nuclear receptor from Onchocerca volvulus. , 1999, Molecular and biochemical parasitology.

[39]  C. Mello,et al.  RNAi in C. elegans: Soaking in the Genome Sequence , 1998, Science.

[40]  Steven A. Williams,et al.  Identification of Potential Vaccine and Drug Target Candidates by Expressed Sequence Tag Analysis and Immunoscreening of Onchocerca volvulus Larval cDNA Libraries , 2000, Infection and Immunity.

[41]  R. Slade,et al.  A cDNA encoding a pepsinogen-like, aspartic protease from the human roundworm parasite Strongyloides stercoralis. , 1998, Acta tropica.

[42]  M. Roos The role of drugs in the control of parasitic nematode infections: must we do without? , 1997, Parasitology.

[43]  D. Pratt,et al.  A developmentally regulated cysteine protease gene family in Haemonchus contortus. , 1990, Molecular and biochemical parasitology.

[44]  J. McKerrow,et al.  Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. , 1998, Journal of molecular biology.

[45]  S. Lustigman,et al.  Development of a Recombinant Antigen Vaccine against Infection with the Filarial Worm Onchocerca volvulus , 2001, Infection and Immunity.

[46]  C. Nkenfou,et al.  Molecular cloning and serological characterization of a Brugia malayi pepsin inhibitor homolog. , 1993, Molecular and biochemical parasitology.

[47]  R. Maizels,et al.  A novel serpin expressed by blood-borne microfilariae of the parasitic nematode Brugia malayi inhibits human neutrophil serine proteinases. , 1999, Blood.

[48]  Molecular cloning of a cystatin from parasitic intestinal nematode, Nippostrongylus brasiliensis. , 2001, The journal of medical investigation : JMI.

[49]  P. Bazzicalupo,et al.  Immuno-cross-reactivity of CUT-1 and cuticlin epitopes between ascaris lumbricoides, Caenorhabditis elegans, and Heterorhabditis. , 1998, Journal of structural biology.

[50]  W. F. Gregory,et al.  The Abundant Larval Transcript-1 and -2 Genes ofBrugia malayi Encode Stage-Specific Candidate Vaccine Antigens for Filariasis , 2000, Infection and Immunity.

[51]  M. Bisoffi,et al.  Identification and sequence comparison of a cuticular collagen of Brugia pahangi , 1996, Parasitology.

[52]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[53]  D. Miller,et al.  Identification of a novel family of non-lysosomal aspartic proteases in nematodes. , 1998, Biochimica et biophysica acta.

[54]  L. Bini,et al.  Aspartyl proteases in Caenorhabditis elegans. Isolation, identification and characterization by a combined use of affinity chromatography, two-dimensional gel electrophoresis, microsequencing and databank analysis. , 1999, European journal of biochemistry.

[55]  J. Bakker,et al.  Cloning of a trans-spliced glyceraldehyde-3-phosphate-dehydrogenase gene from the potato cyst nematode Globodera rostochiensis and expression of its putative promoter region in Caenorhabditis elegans. , 1998, Molecular and biochemical parasitology.

[56]  J. Dalton,et al.  Induction of protective immunity in cattle against infection with Fasciola hepatica by vaccination with cathepsin L proteinases and with hemoglobin , 1996, Infection and immunity.

[57]  W. Wood,et al.  Introduction to C. elegans Biology , 1988 .

[58]  R. Bucala,et al.  Filarial Nematode Parasites Secrete a Homologue of the Human Cytokine Macrophage Migration Inhibitory Factor , 1998, Infection and Immunity.

[59]  S. Liddell,et al.  Molecular cloning and characterisation of a putative aspartate proteinase associated with a gut membrane protein complex from adult Haemonchus contortus. , 1997 .

[60]  P. Hotez,et al.  Experimental approaches to the development of a recombinant hookworm vaccine , 1999, Immunological reviews.

[61]  V. Fried,et al.  A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. , 1994, The Journal of biological chemistry.

[62]  G. N. Cox,et al.  Protective studies in sheep immunized with cuticular collagen proteins and peptides of Haemonchus contortus , 1991, Parasite immunology.

[63]  W. F. Gregory,et al.  Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing , 2001, Current Biology.

[64]  J. Daub,et al.  A survey of genes expressed in adults of the human hookworm, Necator americanus , 2000, Parasitology.

[65]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[66]  D. Knox,et al.  Expression of Haemonchus contortus pepsinogen in Caenorhabditis elegans. , 2001, Molecular and biochemical parasitology.

[67]  H. Husi,et al.  Biochemical and Structural Characterization of a Divergent Loop Cyclophilin from Caenorhabditis elegans * , 1999, The Journal of Biological Chemistry.

[68]  P. Bazzicalupo,et al.  The role of dityrosine formation in the crosslinking of CUT-2, the product of a second cuticlin gene of Caenorhabditis elegans. , 1994, Molecular and biochemical parasitology.

[69]  P. Skuce,et al.  Cloning and expression of cystatin, a potent cysteine protease inhibitor from the gut of Haemonchus contortus , 2001, Parasitology.

[70]  D. Pritchard,et al.  Necator americanus (human hookworm) aspartyl proteinases and digestion of skin macromolecules during skin penetration. , 1999, The American journal of tropical medicine and hygiene.

[71]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.