Lenses, fibrations and universal translations†

This paper extends the 'lens' concept for view updating in Computer Science beyond the categories of sets and ordered sets. It is first shown that a constant complement view updating strategy also corresponds to a lens for a categorical database model. A variation on the lens concept called a c-lens is introduced, and shown to correspond to the categorical notion of Grothendieck opfibration. This variant guarantees a universal solution to the view update problem for functorial update processes.

[1]  Frank J. Oles,et al.  A category-theoretic approach to the semantics of programming languages , 1982 .

[2]  Georg Gottlob,et al.  Properties and update semantics of consistent views , 1988, TODS.

[3]  Michael Barr,et al.  Category theory for computing science (2. ed.) , 1995, Prentice Hall international series in computer science.

[4]  Benjamin C. Pierce,et al.  Relational lenses: a language for updatable views , 2006, PODS '06.

[5]  Frank J. Oles,et al.  Type Algebras, Functor Categories, and Block Structure , 1986 .

[6]  Martin Hofmann,et al.  Positive subtyping , 1995, POPL '95.

[7]  Francis Borceux,et al.  Handbook of Categorical Algebra: Bibliography , 1994 .

[8]  Benjamin Pierce,et al.  Lenses and View Update Translation , 2003 .

[9]  Stephen J. Hegner,et al.  An Order-Based Theory of Updates for Closed Database Views , 2004, Annals of Mathematics and Artificial Intelligence.

[10]  Frank Piessens,et al.  Categorical data-specifications , 1995 .

[11]  Nicolas Spyratos,et al.  Update semantics of relational views , 1981, TODS.

[12]  Zinovy Diskin,et al.  Algebraic Graph-Based Approach to Management of Multidatabase Systems , 1995, NGITS.

[13]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[14]  Peter Buneman,et al.  Semistructured data , 1997, PODS.

[15]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[16]  Walter Tholen,et al.  Facets of descent, I , 1994, Appl. Categorical Struct..

[17]  Walter Tholen,et al.  Facets of Descent, II , 1994, Appl. Categorical Struct..

[18]  Ross Street,et al.  Fibrations and Yoneda's lemma in a 2-category , 1974 .

[19]  John C. Reynolds,et al.  Algebraic Methods in Semantics , 1985 .

[20]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[21]  Michael Johnson,et al.  Entity-relationship-attribute designs and sketches , 2002 .

[22]  Michael Johnson,et al.  Algebras and Update Strategies , 2010, J. Univers. Comput. Sci..

[23]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[24]  Michael Johnson,et al.  Fibrations and universal view updatability , 2007, Theor. Comput. Sci..

[25]  Benjamin C. Pierce,et al.  Combinators for bi-directional tree transformations: a linguistic approach to the view update problem , 2005, POPL '05.

[26]  Peter W. O'Hearn,et al.  Parametricity and local variables , 1995, JACM.