Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces

Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately ½ electron per surface unit cell at each GdTiO3/SrTiO3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution, and the influence of different electrostatic boundary conditions are obtained.

[1]  Okada,et al.  Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1-xLaxTiO3. , 1993, Physical review letters.

[2]  Optical study of the free-carrier response of LaTiO3/SrTiO3 superlattices. , 2007, Physical review letters.

[3]  Dmitri O. Klenov,et al.  The Interface between Single Crystalline (001) LaAlO3 and (001) Silicon , 2005 .

[4]  R. Takahashi,et al.  Transport properties of LaTiO3/SrTiO3 heterostructures , 2010 .

[5]  D. Blank,et al.  Structure–Property Relation of SrTiO3/LaAlO3 Interfaces , 2008, 0809.1068.

[6]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[7]  J. Mannhart,et al.  Oxide electronics: Interface takes charge over Si. , 2011, Nature materials.

[8]  S. Chambers Understanding the mechanism of conductivity at the LaAlO3/SrTiO3(001) interface , 2011 .

[9]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[10]  Y. Tokura,et al.  Control of the anomalous hall effect by doping in Eu(1-x)La(x)TiO(3) thin films. , 2009, Physical review letters.

[11]  Maria Varela,et al.  “Charge Leakage” at LaMnO3/SrTiO3 Interfaces , 2010, Advanced materials.

[12]  T. Timusk,et al.  The midinfrared absorption in RTiO3 perovskites (R = La, Ce, Pr, Nd, Sm, Gd): The Hubbard gap? , 1992 .

[13]  N. Brookes,et al.  Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. , 2010, Nature communications.

[14]  S. Satpathy,et al.  Wedge-shaped potential and Airy-function electron localization in oxide superlattices. , 2005, Physical review letters.

[15]  A. Millis,et al.  Two-Dimensional Electron Gases at Oxide Interfaces , 2008 .

[16]  Nicholas J. Wright,et al.  Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach , 2009 .

[17]  D. Hamann,et al.  Self-Consistent Calculation of the Electronic Structure at an Abrupt GaAs-Ge Interface , 1977 .

[18]  D. Muller,et al.  Epitaxial growth and electronic structure of LaTiOx films , 2002 .

[19]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[20]  E. A. Kraut,et al.  Polar heterojunction interfaces , 1978 .

[21]  J. Mannhart,et al.  Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures , 2006, Science.

[22]  J. Mannhart,et al.  Transport properties of LaTiO3+x films and heterostructures , 2003 .