Effects of stand age, tree species, and climate on water table fluctuations and estimated evapotranspiration in managed peatland forests.

[1]  M. Windmuller-Campione,et al.  The Difficulty of Predicting Eastern Spruce Dwarf Mistletoe in Lowland Black Spruce: Model Benchmarking in Northern Minnesota, USA , 2021, Forests.

[2]  A. D’Amato,et al.  Hydrologic variability in black ash wetlands: Implications for vulnerability to emerald ash borer , 2021, Hydrological Processes.

[3]  Alain Leduc,et al.  Partial Harvest in Paludified Black Spruce Stand: Short-Term Effects on Water Table and Variation in Stem Diameter , 2021, Forests.

[4]  M. Windmuller-Campione,et al.  Influence of eastern spruce dwarf mistletoe on stand structure and composition in northern Minnesota , 2021 .

[5]  R. Mäkipää,et al.  Vegetation controls of water and energy balance of a drained peatland forest: Responses to alternative harvesting practices , 2020 .

[6]  T. A. Black,et al.  Increasing contribution of peatlands to boreal evapotranspiration in a warming climate , 2020, Nature Climate Change.

[7]  Y. Bergeron,et al.  Long-Term Carbon Sequestration in Boreal Forested Peatlands in Eastern Canada , 2020, Ecosystems.

[8]  M. Windmuller-Campione,et al.  Short- and Long-Term Results of Alternative Silviculture in Peatland Black Spruce in Minnesota, USA , 2020 .

[9]  D. Peteet,et al.  Rapid expansion of northern peatlands and doubled estimate of carbon storage , 2019, Nature Geoscience.

[10]  B. Aukema,et al.  Anomalous outbreaks of an invasive defoliator and native bark beetle facilitated by warm temperatures, changes in precipitation and interspecific interactions , 2019, Ecography.

[11]  F. Giorgi,et al.  The response of precipitation characteristics to global warming from climate projections , 2019, Earth System Dynamics.

[12]  A. D’Amato,et al.  Forested versus herbaceous wetlands: Can management mitigate ecohydrologic regime shifts from invasive emerald ash borer? , 2018, Journal of environmental management.

[13]  J. Holden,et al.  PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis , 2018 .

[14]  W. Peltier,et al.  Uncertainty in Future Summer Precipitation in the Laurentian Great Lakes Basin: Dynamical Downscaling and the Influence of Continental-Scale Processes on Regional Climate Change , 2017 .

[15]  C. Hopkinson,et al.  Low Evapotranspiration Enhances the Resilience of Peatland Carbon Stocks to Fire , 2017 .

[16]  S. Page,et al.  Peatlands and Global Change: Response and Resilience , 2016 .

[17]  B. Lennartz,et al.  Changes in flow and transport patterns in fen peat following soil degradation , 2016 .

[18]  G. Liknes,et al.  Stand-level factors associated with resurging mortality from eastern larch beetle (Dendroctonus simplex LeConte) , 2016 .

[19]  Russell V. Lenth,et al.  Least-Squares Means: The R Package lsmeans , 2016 .

[20]  J. Mao,et al.  Representing northern peatland microtopography and hydrology within the Community Land Model , 2015 .

[21]  B. Aukema,et al.  Influence of temperature on the reproductive success, brood development and brood fitness of the eastern larch beetle Dendroctonus simplex LeConte , 2015 .

[22]  Paul J. Morris,et al.  Hydrological feedbacks in northern peatlands , 2015 .

[23]  Brian A Branfireun,et al.  Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability , 2015, Global change biology.

[24]  K. Brooks,et al.  Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA , 2014 .

[25]  M. Strack,et al.  Responses of carbon dioxide flux and plant biomass to water table drawdown in a treed peatland in northern Alberta: a climate change perspective , 2014 .

[26]  J. Price,et al.  Ecohydrology of Sphagnum moss hummocks: mechanisms of capitula water supply and simulated effects of evaporation , 2014 .

[27]  M. Cohen,et al.  Ecosystem specific yield for estimating evapotranspiration and groundwater exchange from diel surface water variation , 2014 .

[28]  P. Moore,et al.  Effect of long-term water table manipulation on peatland evapotranspiration , 2013 .

[29]  Richard A. Fournier,et al.  Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model , 2013 .

[30]  B. Ewers,et al.  Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence. , 2012, Tree physiology.

[31]  S. Strilesky,et al.  A comparison of the net ecosystem exchange of carbon dioxide and evapotranspiration for treed and open portions of a temperate peatland , 2012 .

[32]  V. Lieffers,et al.  Seedling growth and water use of boreal conifers across different temperatures and near-flooded soil conditions , 2011 .

[33]  H. Koivusalo,et al.  Role of tree stand evapotranspiration in maintaining satisfactory drainage conditions in drained peatlands , 2010 .

[34]  J. Loisel,et al.  Global peatland dynamics since the Last Glacial Maximum , 2010 .

[35]  A. Hofgaard,et al.  Does Soil Organic Layer Thickness Affect Climate–Growth Relationships in the Black Spruce Boreal Ecosystem? , 2010, Ecosystems.

[36]  J. Price,et al.  Water flow in Sphagnum hummocks: mesocosm measurements and modelling. , 2010 .

[37]  Y. Bergeron,et al.  The role of gaps and tree regeneration in the transition from dense to open black spruce stands , 2010 .

[38]  B. Ewers,et al.  Evapotranspiration in intermediate‐aged and mature fens and upland black spruce boreal forests , 2009 .

[39]  S. Wofsy,et al.  Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest. , 2009, Ecological Applications.

[40]  J. Holden Flow through macropores of different size classes in blanket peat. , 2009 .

[41]  Karen Updegraff,et al.  RAPID CARBON RESPONSE OF PEATLANDS TO CLIMATE CHANGE. , 2008, Ecology.

[42]  S. Loheide A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations , 2008 .

[43]  Allison L. Dunn,et al.  A long‐term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends , 2007 .

[44]  R. Granger,et al.  Summer carbon dioxide and water vapor fluxes across a range of northern peatlands , 2006 .

[45]  J. Holden Chapter 14 Peatland hydrology , 2006 .

[46]  Joseph Holden,et al.  Peatland hydrology and carbon release: why small-scale process matters , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  James J. Butler,et al.  Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment , 2005 .

[48]  N. Fenton,et al.  Paludification and management of forested peatlands in Canada: a literature review , 2005 .

[49]  P. Drapeau,et al.  Structural development following fire in black spruce boreal forest , 2005 .

[50]  T. J. Carleton,et al.  Understorey vegetation change in a Picea mariana chronosequence , 2004, Vegetatio.

[51]  Alan G. Barr,et al.  Year‐round observations of the energy and water vapour fluxes above a boreal black spruce forest , 2003 .

[52]  D. Pothier,et al.  Using the shelterwood method to mitigate water table rise after forest harvesting , 2003 .

[53]  S. Macdonald,et al.  Responses of black spruce (Picea mariana) and tamarack (Larix laricina) to flooding and ethylene. , 2003, Tree physiology.

[54]  T. Moore,et al.  Experimental response of peatland carbon dynamics to a water table fluctuation , 2003, Aquatic Sciences.

[55]  S. Macdonald,et al.  Ecophysiological adaptations of black spruce ( Picea mariana) and tamarack ( Larix laricina) seedlings to flooding , 2003, Trees.

[56]  Merritt R. Turetsky,et al.  Current disturbance and the diminishing peatland carbon sink , 2002 .

[57]  S. Payette,et al.  Ecological impact of clear-cutting on black spruce-moss forests in southern Québec , 2002 .

[58]  R. S. Clymo,et al.  Feedback control of the rate of peat formation , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  D. Greene,et al.  A review of the regeneration dynamics of North American boreal forest tree species , 1999 .

[60]  A. Groot,et al.  An individual-tree basal area growth model for black spruce in second-growth peatland stands , 1999 .

[61]  M. Qi,et al.  Effect of harvesting method on seed bank dynamics in a boreal mixedwood forest in northwestern Ontario , 1998 .

[62]  S. Trumbore,et al.  Moss and soil contributions to the annual net carbon flux of a maturing boreal forest , 1997 .

[63]  D. Morris The role of long-term site productivity in maintaining healthy ecosystems: A prerequisite of ecosystem management , 1997 .

[64]  D. Siegel,et al.  Chemical dilation and the dual porosity of humified bog peat , 1997 .

[65]  D. Hanson,et al.  Development of a multilevel Ecological Classification System for the state of Minnesota , 1996, Environmental monitoring and assessment.

[66]  R. Rothwell,et al.  Watering up After Clear‐Cutting on Forested Wetlands of the St. Lawrence Lowland , 1995 .

[67]  Tim R. Moore,et al.  The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils , 1993 .

[68]  Edgar Robichaud,et al.  The effect of site quality on the timing of stand breakup, tree longevity, and the maximum attainable height of black spruce , 1993 .

[69]  V. Lieffers,et al.  Rooting of peatland black spruce and tamarack in relation to depth of water table , 1987 .

[70]  Elon S. Veny Forest Harvesting and Water: the Lake States Experience , 1986 .

[71]  D. F. Grigal,et al.  Biomass and productivity of the woody strata of forested bogs in northern Minnesota. , 1985 .

[72]  R. S. Clymo,et al.  The Limits to Peat Bog Growth , 1984 .

[73]  James M. Brown,et al.  Evaporation from a sphagnum moss surface , 1980 .

[74]  M. L. Heinselman,et al.  Forest Sites, Bog Processes, and Peatland Types in the Glacial Lake Agassiz Region, Minnesota , 1963 .