Preservation of Scalarization Optimal Points in the Embedding Technique for Continuous Time Mean Variance Optimization

A continuous time mean variance (MV) problem optimizes the biobjective criteria $(\mathcal V,\mathcal E)$, representing variance $\mathcal V$ and expected value $\mathcal E$, respectively, of a random variable at the end of a time horizon $T$. This problem is computationally challenging since the dynamic programming principle cannot be directly applied to the variance criterion. An embedding technique has been proposed in [D. Li and W. L. Ng, Math. Finance, 10 (2000), pp. 387--406; X. Y. Zhou and D. Li, Appl. Math. Optim., 42 (2000), pp. 19--33] to generate the set of MV scalarization optimal points, which is in general a subset of the MV Pareto optimal points. However, there are a number of complications when we apply the embedding technique in the context of a numerical algorithm. In particular, the frontier generated by the embedding technique may contain spurious points which are not MV optimal. In this paper, we propose a method to eliminate such points, when they exist. We show that the original MV ...

[1]  Alexander Schied,et al.  Dynamical models for market impact and algorithms for optimal order execution , 2013 .

[2]  H. Waelbroeck,et al.  Optimal Execution of Portfolio Transactions with Short‐Term Alpha , 2013 .

[3]  Tomas Bjork,et al.  A General Theory of Markovian Time Inconsistent Stochastic Control Problems , 2010 .

[4]  Duan Li,et al.  Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation , 2000 .

[5]  Shu Tong Tse,et al.  Numerical Methods for Optimal Trade Execution , 2012 .

[6]  Robert Almgren,et al.  Optimal Trading with Stochastic Liquidity and Volatility , 2012, SIAM J. Financial Math..

[7]  P. A. Forsyth,et al.  Comparison Between the Mean-Variance Optimal and the Mean-Quadratic-Variation Optimal Trading Strategies , 2013 .

[8]  Mark J. Joe A General Theory , 2006 .

[9]  Jean-Philippe Bouchaud,et al.  More Statistical Properties of Order Books and Price Impact , 2002, cond-mat/0210710.

[10]  Peter A. Forsyth,et al.  Optimal trade execution: A mean quadratic variation approach , 2012 .

[11]  Jim Gatheral,et al.  Optimal Trade Execution under Geometric Brownian Motion in the Almgren and Chriss Framework , 2011 .

[12]  Peter A. Forsyth,et al.  A Hamilton-Jacobi-Bellman approach to optimal trade execution , 2011 .

[13]  Alexander Schied,et al.  Order Book Resilience, Price Manipulation, and the Positive Portfolio Problem , 2012, SIAM J. Financial Math..

[14]  R. Almgren,et al.  Direct Estimation of Equity Market Impact , 2005 .

[15]  Thomas F. Coleman,et al.  Optimal Portfolio Execution Strategies and Sensitivity to Price Impact Parameters , 2009, SIAM J. Optim..

[16]  Julian Lorenz,et al.  Mean–Variance Optimal Adaptive Execution , 2011 .

[17]  Gur Huberman,et al.  Price Manipulation and Quasi-Arbitrage , 2004 .

[18]  Jan Palczewski,et al.  Investment Strategies and Compensation of a Mean-Variance Optimizing Fund Manager , 2012, Eur. J. Oper. Res..

[19]  A. M. Andrew,et al.  Another Efficient Algorithm for Convex Hulls in Two Dimensions , 1979, Inf. Process. Lett..

[20]  Huyên Pham,et al.  Numerical Methods for an Optimal Order Execution Problem , 2010, 1006.0768.

[21]  Suleyman Basak,et al.  Dynamic Mean-Variance Asset Allocation , 2009 .

[22]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[23]  F. Lillo,et al.  Econophysics: Master curve for price-impact function , 2003, Nature.

[24]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[25]  Thomas F. Coleman,et al.  Optimal Execution Under Jump Models For Uncertain Price Impact , 2013 .

[26]  Robert Ferstenberg,et al.  Execution Risk , 2006 .