On generalized quadrature rules for fast oscillatory integrals

Abstract In this paper, we present numerical analysis for the generalized quadrature rule for ∫ a b f ( x ) w ( r , x ) d x , where w ( r , x ) is an oscillatory function, and derive higher order generalized quadrature rules. The results show that the generalized quadrature rules are efficient for Bessel-trigonometric transformations and the accuracy increases when oscillation becomes faster.

[1]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[2]  J. R. Webster,et al.  A method to generate generalized quadrature rule for oscillatory integrals , 2000 .

[3]  G. Evans Practical Numerical Integration , 1993 .

[4]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[5]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[6]  G. A. Evans,et al.  Some theoretical aspects of generalised quadrature methods , 2003, J. Complex..

[7]  A. Iserles,et al.  On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .

[8]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[9]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[10]  Shuhuang Xiang,et al.  Numerical analysis of a fast integration method for highly oscillatory functions , 2007 .

[11]  Shuhuang Xiang,et al.  Efficient Filon-type methods for (∫abf(x), eiωg(x), dx) , 2007, Numerische Mathematik.

[12]  J. R. Webster,et al.  A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .

[13]  David Levin,et al.  Analysis of a collocation method for integrating rapidly oscillatory functions , 1997 .

[14]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  R. Piessens,et al.  A numerical method for the integration of oscillatory functions , 1971 .

[16]  S. Xiang Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .

[17]  David Levin,et al.  Fast integration of rapidly oscillatory functions , 1996 .

[18]  R. Kress Numerical Analysis , 1998 .

[19]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[20]  A. Iserles,et al.  Highly Oscillatory Quadrature: The Story soFar , 2006 .