On generalized quadrature rules for fast oscillatory integrals
暂无分享,去创建一个
[1] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[2] J. R. Webster,et al. A method to generate generalized quadrature rule for oscillatory integrals , 2000 .
[3] G. Evans. Practical Numerical Integration , 1993 .
[4] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[5] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[6] G. A. Evans,et al. Some theoretical aspects of generalised quadrature methods , 2003, J. Complex..
[7] A. Iserles,et al. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .
[8] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[9] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[10] Shuhuang Xiang,et al. Numerical analysis of a fast integration method for highly oscillatory functions , 2007 .
[11] Shuhuang Xiang,et al. Efficient Filon-type methods for (∫abf(x), eiωg(x), dx) , 2007, Numerische Mathematik.
[12] J. R. Webster,et al. A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .
[13] David Levin,et al. Analysis of a collocation method for integrating rapidly oscillatory functions , 1997 .
[14] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] R. Piessens,et al. A numerical method for the integration of oscillatory functions , 1971 .
[16] S. Xiang. Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .
[17] David Levin,et al. Fast integration of rapidly oscillatory functions , 1996 .
[18] R. Kress. Numerical Analysis , 1998 .
[19] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[20] A. Iserles,et al. Highly Oscillatory Quadrature: The Story soFar , 2006 .