Interactive Evolutionary Computation in Identification of Dynamical Systems

In practical system identification it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are often non-commensurable and the objective functions are explicitly/mathematically not available. In this paper, Interactive Evolutionary Computation (IEC) is used to effectively handle these identification problems. IEC is an optimization method that adopts evolutionary computation (EC) among system optimization based on subjective human evaluation. The proposed approach has been implemented in MATLAB (EAsy-IEC Toolbox) and applied to the identification of a pilot batch reactor. The results show that IEC is an efficient and comfortable method to incorporate a priori knowledge of the user into a user-guided optimization and identification problems. The developed EASy-IEC Toolbox can be downloaded from the website of the authors: http://www.fmt.vein.hu/softcomp/EAsy.

[1]  Guy Albert Dumont,et al.  System identification and control using genetic algorithms , 1992, IEEE Trans. Syst. Man Cybern..

[2]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[3]  Christiaan Moons,et al.  Parameter identification of induction motor drives , 1995, Autom..

[4]  A. E. Eiben,et al.  Evolutionary Computing , 2002, Lecture Notes in Computer Science.

[5]  M. Papadrakakis,et al.  Structural optimization using evolutionary algorithms , 2002 .

[6]  H.J.A.F. Tulleken Grey-Box Modelling and Identification, Using Physical Knowledge and Bayesian Techniques , 1990 .

[7]  M. Setnes,et al.  Constrained parameter estimation in fuzzy modeling , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[8]  X. Joulia,et al.  From process simulation to general estimation , 1996 .

[9]  Joshua R. Smith Designing Biomorphs with an Interactive Genetic Algorithm , 1991, ICGA.

[10]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[11]  Kay Chen Tan,et al.  Grey-box model identification via evolutionary computing , 2002 .

[12]  Hitoshi Furuta,et al.  APPLICATION OF GENETIC ALGORITHM TO AESTHETIC DESIGN OF BRIDGE STRUCTURES , 1995 .

[13]  Jacques Villermaux,et al.  Batch reactor optimization by use of tendency models , 1989 .

[14]  Jon McCormack,et al.  Interactive evolution of L-System grammars for computer graphics modelling , 1993 .

[15]  Hideyuki Takagi,et al.  Interactive Evolutionary Computation : System Optimization Based on Human Subjective Evaluation , 1998 .

[16]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[17]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[18]  Daniel R. Lewin EVOLUTIONARY ALGORITHMS IN CONTROL SYSTEM ENGINEERING , 2005 .

[19]  Kansei,et al.  Interactive Evolutionary Computation : Cooperation of computational intelligence and human , 2022 .

[20]  David G. Green,et al.  Complex Systems: From Biology to Computation , 1993 .

[21]  Thomas Bäck,et al.  An Overview of Evolutionary Computation , 1993, ECML.

[22]  T. Johansen Multi-Objective Identification of FIR Models , 2000 .

[23]  R. Noel,et al.  Objet Trouvé, Holism, and Morphogenesis in Interactive Evolution , 2019, Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society.

[24]  Ferenc Szeifert,et al.  Constraint parameter estimation in fuzzy modelling , 1999 .