Delayed Striate Cortical Activation during Spatial Attention

[1]  Stephen E. Robinson Environmental Noise Cancellation for Biomagnetic Measurements , 1989 .

[2]  Allen Allport,et al.  Visual attention , 1989 .

[3]  Samuel J. Williamson,et al.  Advances in Biomagnetism , 1990, Springer US.

[4]  S J Luck,et al.  Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. , 1990, Electroencephalography and clinical neurophysiology.

[5]  S J Luck,et al.  Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. , 1990, Electroencephalography and clinical neurophysiology.

[6]  M. Woldorff,et al.  Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. , 2007, Psychophysiology.

[7]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[8]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[9]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[10]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[11]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[12]  C J Aine,et al.  Temporal dynamics of visual-evoked neuromagnetic sources: effects of stimulus parameters and selective attention. , 1995, The International journal of neuroscience.

[13]  S. Hillyard,et al.  Spatial Selective Attention Affects Early Extrastriate But Not Striate Components of the Visual Evoked Potential , 1996, Journal of Cognitive Neuroscience.

[14]  C C Wood,et al.  Retinotopic organization of human visual cortex: departures from the classical model. , 1996, Cerebral cortex.

[15]  J. J. Lange,et al.  An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli. , 1997, Psychophysiology.

[16]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[17]  G Gratton,et al.  Attention and probability effects in the human occipital cortex: an optical imaging study , 1997, Neuroreport.

[18]  P. Fox,et al.  Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs , 1997, Human brain mapping.

[19]  G. Mangun,et al.  Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex , 1997, Human brain mapping.

[20]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[21]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[22]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[23]  T R Vidyasagar,et al.  Gating of neuronal responses in macaque primary visual cortex by an attentional spotlight , 1998, Neuroreport.

[24]  A M Dale,et al.  Randomized event‐related experimental designs allow for extremely rapid presentation rates using functional MRI , 1998, Neuroreport.

[25]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[26]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  J. J. Lange,et al.  Color selection and location selection in ERPs: differences, similarities and `neural specificity' , 1998, Biological Psychology.

[28]  S. Hillyard,et al.  Event-related brain potentials in the study of visual selective attention. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  O Josephs,et al.  Event-related functional magnetic resonance imaging: modelling, inference and optimization. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[31]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[32]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[33]  Trichur Raman Vidyasagar A neuronal model of attentional spotlight: parietal guiding the temporal , 1999, Brain Research Reviews.

[34]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[35]  C. Gilbert,et al.  Attention and primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[37]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[38]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[40]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  F. Sengpiel,et al.  Visual perception: Spotlight on the primary visual cortex , 1999, Current Biology.

[42]  F. Sengpiel,et al.  Visual attention: spotlight on the primary visual cortex. , 1999, Current biology : CB.

[43]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[44]  A. Dale,et al.  Deconvolution of Event-Related fMRI Responses in Fast-Rate Experimental Designs: Tracking Amplitude Variations , 2000, Journal of Cognitive Neuroscience.

[45]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[46]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[47]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[48]  Richard B Buxton,et al.  Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas , 2001, Vision Research.

[49]  H. Spekreijse,et al.  Two distinct modes of sensory processing observed in monkey primary visual cortex (V1) , 2001, Nature Neuroscience.

[50]  Jia Fc,et al.  [Event-related functional magnetic resonance imaging]. , 2001, Sheng li ke xue jin zhan [Progress in physiology].

[51]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.