Global existence for partially dissipative hyperbolic systems in the Lp framework, and relaxation limit

Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper [10] to a functional framework where the low frequencies of the solution are only bounded in L-type spaces with p larger than 2. This enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem in particular applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence for suitable norms, a completely new result to the best of our knowledge.

[1]  Shuichi Kawashima,et al.  Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics , 1984 .

[2]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[3]  Wen-An Yong,et al.  Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .

[4]  Shuichi Kawashima,et al.  Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation , 1985 .

[5]  Thierry Goudon,et al.  The strong relaxation limit of the multidimensional isothermal Euler equations , 2006 .

[6]  Victor Wasiolek Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre , 2015 .

[7]  Pierangelo Marcati,et al.  Hyperbolic to Parabolic Relaxation Theory for Quasilinear First Order Systems , 2000 .

[8]  Yue-Jun Peng,et al.  Convergence rate from hyperbolic systems of balance laws to parabolic systems , 2019, Applicable Analysis.

[9]  Decay estimates for hyperbolic balance laws , 2009 .

[10]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[11]  Qionglei Chen,et al.  Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.

[12]  Jiang Xu,et al.  Relaxation Limit in Besov Spaces for Compressible Euler Equations , 2011, 1109.3835.

[13]  Raphaël Danchin,et al.  A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .

[14]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[15]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[16]  Karine Beauchard,et al.  Large Time Asymptotics for Partially Dissipative Hyperbolic Systems , 2011 .

[17]  Jean-François Coulombel,et al.  The strong relaxation limit of the multidimensional Euler equations , 2013 .

[18]  R. NATALINI,et al.  Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy , 2007 .

[19]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[20]  Raphael Danchin,et al.  Partially dissipative hyperbolic systems in the critical regularity setting: The multi-dimensional case , 2021, Journal de Mathématiques Pures et Appliquées.

[21]  L. Hsiao Quasilinear Hyperbolic Systems and Dissipative Mechanisms , 1998 .

[22]  S. Kawashima,et al.  Diffusive relaxation limit of classical solutions to the damped compressible Euler equations , 2014 .

[23]  Yue-Jun Peng,et al.  Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems , 2016 .

[24]  Ta-Tsien Li Global classical solutions for quasilinear hyperbolic systems , 1994 .

[25]  Pierangelo Marcati,et al.  The One-Dimensional Darcy's Law as the Limit of a Compressible Euler Flow , 1990 .

[26]  Raphael Danchin,et al.  Partially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applications , 2021, Pure and Applied Analysis.

[27]  S. Kawashima,et al.  Global Classical Solutions for Partially Dissipative Hyperbolic System of Balance Laws , 2012, 1202.6098.

[28]  J. Coron Control and Nonlinearity , 2007 .

[29]  M. Rascle,et al.  Strong relaxation of the isothermal Euler system to the heat equation , 2002 .