Global existence for partially dissipative hyperbolic systems in the Lp framework, and relaxation limit
暂无分享,去创建一个
[1] Shuichi Kawashima,et al. Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics , 1984 .
[2] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[3] Wen-An Yong,et al. Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .
[4] Shuichi Kawashima,et al. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation , 1985 .
[5] Thierry Goudon,et al. The strong relaxation limit of the multidimensional isothermal Euler equations , 2006 .
[6] Victor Wasiolek. Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre , 2015 .
[7] Pierangelo Marcati,et al. Hyperbolic to Parabolic Relaxation Theory for Quasilinear First Order Systems , 2000 .
[8] Yue-Jun Peng,et al. Convergence rate from hyperbolic systems of balance laws to parabolic systems , 2019, Applicable Analysis.
[9] Decay estimates for hyperbolic balance laws , 2009 .
[10] R. Danchin. LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .
[11] Qionglei Chen,et al. Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.
[12] Jiang Xu,et al. Relaxation Limit in Besov Spaces for Compressible Euler Equations , 2011, 1109.3835.
[13] Raphaël Danchin,et al. A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .
[14] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[15] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables , 1984 .
[16] Karine Beauchard,et al. Large Time Asymptotics for Partially Dissipative Hyperbolic Systems , 2011 .
[17] Jean-François Coulombel,et al. The strong relaxation limit of the multidimensional Euler equations , 2013 .
[18] R. NATALINI,et al. Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy , 2007 .
[19] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[20] Raphael Danchin,et al. Partially dissipative hyperbolic systems in the critical regularity setting: The multi-dimensional case , 2021, Journal de Mathématiques Pures et Appliquées.
[21] L. Hsiao. Quasilinear Hyperbolic Systems and Dissipative Mechanisms , 1998 .
[22] S. Kawashima,et al. Diffusive relaxation limit of classical solutions to the damped compressible Euler equations , 2014 .
[23] Yue-Jun Peng,et al. Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems , 2016 .
[24] Ta-Tsien Li. Global classical solutions for quasilinear hyperbolic systems , 1994 .
[25] Pierangelo Marcati,et al. The One-Dimensional Darcy's Law as the Limit of a Compressible Euler Flow , 1990 .
[26] Raphael Danchin,et al. Partially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applications , 2021, Pure and Applied Analysis.
[27] S. Kawashima,et al. Global Classical Solutions for Partially Dissipative Hyperbolic System of Balance Laws , 2012, 1202.6098.
[28] J. Coron. Control and Nonlinearity , 2007 .
[29] M. Rascle,et al. Strong relaxation of the isothermal Euler system to the heat equation , 2002 .