Face Recognition: From Traditional to Deep Learning Methods

Starting in the seventies, face recognition has become one of the most researched topics in computer vision and biometrics. Traditional methods based on hand-crafted features and traditional machine learning techniques have recently been superseded by deep neural networks trained with very large datasets. In this paper we provide a comprehensive and up-to-date literature review of popular face recognition methods including both traditional (geometry-based, holistic, feature-based and hybrid methods) and deep learning methods.

[1]  Yang Song,et al.  Age Progression/Regression by Conditional Adversarial Autoencoder , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Chengjun Liu,et al.  Independent component analysis of Gabor features for face recognition , 2003, IEEE Trans. Neural Networks.

[3]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[4]  Cong Geng,et al.  Face recognition using sift features , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[5]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[7]  Rama Chellappa,et al.  Unconstrained face verification using deep CNN features , 2015, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[8]  Antonio Albiol,et al.  Face recognition using HOG-EBGM , 2008, Pattern Recognit. Lett..

[9]  Ran He,et al.  Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[10]  Anil K. Jain,et al.  A Discriminative Model for Age Invariant Face Recognition , 2011, IEEE Transactions on Information Forensics and Security.

[11]  Alex Pentland,et al.  Beyond eigenfaces: probabilistic matching for face recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[12]  Timo Ahonen,et al.  Local phase quantization for blur-insensitive image analysis , 2012, Image Vis. Comput..

[13]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Xiaogang Wang,et al.  Deeply learned face representations are sparse, selective, and robust , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Chi-Keung Tang,et al.  Conditional CycleGAN for Attribute Guided Face Image Generation , 2017, ArXiv.

[16]  Meng Yang,et al.  Large-Margin Softmax Loss for Convolutional Neural Networks , 2016, ICML.

[17]  Xiangyang Xue,et al.  Semi-Latent GAN: Learning to generate and modify facial images from attributes , 2017, ArXiv.

[18]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[19]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[20]  Xiaoming Liu,et al.  Representation Learning by Rotating Your Faces , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Hossein Mobahi,et al.  Face recognition with contiguous occlusion using markov random fields , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[22]  Deli Zhao,et al.  Laplacian PCA and Its Applications , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  Michael David Kelly,et al.  Visual identification of people by computer , 1970 .

[24]  Bertram E. Shi,et al.  Photorealistic facial expression synthesis by the conditional difference adversarial autoencoder , 2017, 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII).

[25]  Sun-Yuan Kung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997, IEEE Trans. Neural Networks.

[26]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[27]  Xiaoou Tang,et al.  Surpassing Human-Level Face Verification Performance on LFW with GaussianFace , 2014, AAAI.

[28]  Yuning Jiang,et al.  Learning Deep Face Representation , 2014, ArXiv.

[29]  Swami Sankaranarayanan,et al.  Triplet Similarity Embedding for Face Verification , 2016, ArXiv.

[30]  Yuxiao Hu,et al.  MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition , 2016, ECCV.

[31]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[32]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[33]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Jian Cheng,et al.  Additive Margin Softmax for Face Verification , 2018, IEEE Signal Processing Letters.

[35]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[37]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[38]  Peter N. Belhumeur,et al.  Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification , 2012, BMVC.

[39]  Chi-Keung Tang,et al.  Attribute-Guided Face Generation Using Conditional CycleGAN , 2017, ECCV.

[40]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[41]  Takeo Kanade,et al.  Picture Processing System by Computer Complex and Recognition of Human Faces , 1974 .

[42]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[43]  Shiguang Shan,et al.  Arbitrary Facial Attribute Editing: Only Change What You Want , 2017, ArXiv.

[44]  Honglak Lee,et al.  Learning hierarchical representations for face verification with convolutional deep belief networks , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[46]  Andrew Brock,et al.  Neural Photo Editing with Introspective Adversarial Networks , 2016, ICLR.

[47]  Andrea Lagorio,et al.  On the Use of SIFT Features for Face Authentication , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[48]  Gustavo Carneiro,et al.  Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Matti Pietikäinen,et al.  Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[51]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[52]  Carlos D. Castillo,et al.  UMDFaces: An annotated face dataset for training deep networks , 2016, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[53]  Chengjun Liu,et al.  Gabor-based kernel PCA with fractional power polynomial models for face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[55]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[56]  Jiawei Han,et al.  Orthogonal Laplacianfaces for Face Recognition , 2006, IEEE Transactions on Image Processing.

[57]  Qi Yin,et al.  Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? , 2015, ArXiv.

[58]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Hakan Cevikalp,et al.  Discriminative Common Vector Method With Kernels , 2006, IEEE Transactions on Neural Networks.

[60]  Shengcai Liao,et al.  Learning Face Representation from Scratch , 2014, ArXiv.

[61]  Liming Chen,et al.  DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[62]  Omkar M. Parkhi,et al.  VGGFace2: A Dataset for Recognising Faces across Pose and Age , 2017, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[63]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[64]  Ira Kemelmacher-Shlizerman,et al.  Level Playing Field for Million Scale Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Xiaogang Wang,et al.  Deep Learning Face Representation from Predicting 10,000 Classes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Masakazu Iwamura,et al.  Deep Pyramidal Residual Networks with Separated Stochastic Depth , 2016, ArXiv.

[67]  Hermann Ney,et al.  SURF-Face: Face Recognition Under Viewpoint Consistency Constraints , 2009, BMVC.

[68]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Matti Pietikäinen,et al.  Learning Discriminant Face Descriptor , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[71]  Carlos D. Castillo,et al.  The Do’s and Don’ts for CNN-Based Face Verification , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[72]  Jean-Luc Dugelay,et al.  Face aging with conditional generative adversarial networks , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[73]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[74]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[75]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[76]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Kin-Man Lam,et al.  Illumination invariant face recognition , 2005, Pattern Recognit..

[78]  Chi-Ho Chan,et al.  Multispectral Local Binary Pattern Histogram for Component-based Color Face Verification , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[79]  Gaurav Sharma,et al.  Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis , 2012, ECCV.

[80]  Jian Sun,et al.  Bayesian Face Revisited: A Joint Formulation , 2012, ECCV.

[81]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[82]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[84]  Yu Qiao,et al.  A Discriminative Feature Learning Approach for Deep Face Recognition , 2016, ECCV.

[85]  Tal Hassner,et al.  Effective face frontalization in unconstrained images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Qingshan Liu,et al.  Face recognition using kernel based fisher discriminant analysis , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[87]  Bogdan Raducanu,et al.  Invertible Conditional GANs for image editing , 2016, ArXiv.

[88]  Baochang Zhang,et al.  Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor , 2010, IEEE Transactions on Image Processing.

[89]  Aleix M. Martínez,et al.  Face recognition with occlusions in the training and testing sets , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[90]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[91]  Wen Gao,et al.  Multi-resolution Histograms of Local Variation Patterns (MHLVP) for Robust Face Recognition , 2005, AVBPA.

[92]  Rama Chellappa,et al.  ExprGAN: Facial Expression Editing with Controllable Expression Intensity , 2017, AAAI.

[93]  Cordelia Schmid,et al.  Is that you? Metric learning approaches for face identification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[94]  Wen Gao,et al.  Ensemble of Piecewise FDA Based on Spatial Histograms of Local (Gabor) Binary Patterns for Face Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[95]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[96]  Andrea Cavallaro,et al.  Compact Signatures for 3D Face Recognition under Varying Expressions , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[97]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[98]  Trevor Darrell,et al.  Discriminative Gaussian process latent variable model for classification , 2007, ICML '07.

[99]  William T. Freeman,et al.  Orientation Histograms for Hand Gesture Recognition , 1995 .

[100]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[101]  Xiaogang Wang,et al.  DeepID3: Face Recognition with Very Deep Neural Networks , 2015, ArXiv.

[102]  Jiri Matas,et al.  Support vector machines for face authentication , 2002, Image Vis. Comput..

[103]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[104]  Wei Shen,et al.  Learning Residual Images for Face Attribute Manipulation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[105]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[106]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[107]  Barnabás Takács,et al.  Comparing face images using the modified Hausdorff distance , 1998, Pattern Recognit..

[108]  Dacheng Tao,et al.  A Comprehensive Survey on Pose-Invariant Face Recognition , 2015, ACM Trans. Intell. Syst. Technol..

[109]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  Di Huang,et al.  Local Binary Patterns and Its Application to Facial Image Analysis: A Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[111]  Carlos D. Castillo,et al.  Triplet probabilistic embedding for face verification and clustering , 2016, 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[112]  Xiaogang Wang,et al.  Deep Learning Face Representation by Joint Identification-Verification , 2014, NIPS.

[113]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[114]  Jian Sun,et al.  Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[115]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[116]  Yiying Tong,et al.  Age-Invariant Face Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  R. Chellappa,et al.  Subspace Linear Discriminant Analysis for Face Recognition , 1999 .

[118]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[119]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[120]  Zhenan Sun,et al.  A Lightened CNN for Deep Face Representation , 2015, ArXiv.

[121]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[122]  Shiguang Shan,et al.  AttGAN: Facial Attribute Editing by Only Changing What You Want , 2017, IEEE Transactions on Image Processing.

[123]  Yang Liu,et al.  MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices , 2018, CCBR.

[124]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[125]  Li Meng,et al.  Enhancing Convolutional Neural Networks for Face Recognition with Occlusion Maps and Batch Triplet Loss , 2018, Image Vis. Comput..

[126]  Xiaoyang Tan,et al.  Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition , 2007, AMFG.

[127]  Xiaoou Tang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, CVPR 2004.

[128]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[129]  Stefanos Zafeiriou,et al.  ArcFace: Additive Angular Margin Loss for Deep Face Recognition , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[131]  Jun Li,et al.  Deep Face Recognition with Center Invariant Loss , 2017, ACM Multimedia.

[132]  Xiao Zhang,et al.  Range Loss for Deep Face Recognition with Long-Tailed Training Data , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[133]  Guillaume Lample,et al.  Fader Networks: Manipulating Images by Sliding Attributes , 2017, NIPS.

[134]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[135]  Jian Sun,et al.  Face recognition with learning-based descriptor , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[136]  Sanjoy Dasgupta,et al.  Learning the structure of manifolds using random projections , 2007, NIPS.

[137]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[138]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[139]  Ersin Yumer,et al.  Neural Face Editing with Intrinsic Image Disentangling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[140]  Sergey Ioffe,et al.  Probabilistic Linear Discriminant Analysis , 2006, ECCV.

[141]  Carlos D. Castillo,et al.  L2-constrained Softmax Loss for Discriminative Face Verification , 2017, ArXiv.

[142]  Alan C. Bovik,et al.  Anthropometric 3D Face Recognition , 2010, International Journal of Computer Vision.

[143]  Xing Ji,et al.  CosFace: Large Margin Cosine Loss for Deep Face Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[144]  Yongsheng Gao,et al.  Face Recognition Using Line Edge Map , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[145]  Shree K. Nayar,et al.  Attribute and simile classifiers for face verification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[146]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[147]  Chris Donahue,et al.  Semantically Decomposing the Latent Spaces of Generative Adversarial Networks , 2017, ICLR.

[148]  M. Grgic,et al.  A survey of biometric recognition methods , 2004, Proceedings. Elmar-2004. 46th International Symposium on Electronics in Marine.

[149]  Heinz Hertlein,et al.  Shape and texture combined face recognition for detection of forged ID documents , 2016, 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[150]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[152]  Chi-Ho Chan Multi-scale local Binary Pattern Histogram for Face Recognition , 2007, ICB.

[153]  Yann LeCun,et al.  Emergence of Complex-Like Cells in a Temporal Product Network with Local Receptive Fields , 2010, ArXiv.

[154]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[155]  Ashok Samal,et al.  How effective are landmarks and their geometry for face recognition? , 2006, Comput. Vis. Image Underst..

[156]  Bhiksha Raj,et al.  SphereFace: Deep Hypersphere Embedding for Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[157]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[158]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[159]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[160]  Jung-Woo Ha,et al.  StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.