Shannon entropy as a new measure of aromaticity, Shannon aromaticity.

Based on the local Shannon entropy concept in information theory, a new measure of aromaticity is introduced. This index, which describes the probability of electronic charge distribution between atoms in a given ring, is called Shannon aromaticity (SA). Using B3LYP method and different basis sets (6-31G**, 6-31+G** and 6-311++G**), the SA values of some five-membered heterocycles, C(4)H(4)X, are calculated. Significant linear correlations are observed between the evaluated SAs and some other criteria of aromaticity such as ASE, Lambda and NICS indices. According to the obtained relationships, the range of 0.003 < SA < 0.005 is chosen as the boundary of aromaticity/antiaromaticity. Using B3LYP/6-31+G** level of theory, the Shannon aromaticities for a series of mono-substituted benzene derivatives are calculated and analyzed. It is found that the least standard deviation between the aromaticities and the best linear correlation with the Hammett substituent constants are observed for the new index in comparison with the other indices. Also the values of the new index are evaluated for some substituted penta- and heptafulvenes, which successfully predict the order of aromaticity in these compounds. Applying this index to some non-benzonoids, linear and angular polyacenes also give satisfactory results and prove to be quite suitable for determining the local aromaticity of different rings in polyaromatic hydrocarbons.

[1]  Miquel Solà,et al.  The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. , 2005, The Journal of chemical physics.

[2]  R. Constanciel,et al.  Aspects of the Localizability of Electrons in Atoms and Molecules: Loge Theory and Related Methods , 1972 .

[3]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[4]  L. J. Schaad,et al.  On the Aromaticity of Annulenones , 1972 .

[5]  A. Moyano,et al.  A simple approach for the evaluation of local aromaticities , 1991 .

[6]  J. S. Dehesa,et al.  The Fisher-Shannon information plane, an electron correlation tool. , 2004, The Journal of chemical physics.

[7]  Patrick Bultinck,et al.  Aromaticity in linear polyacenes: Generalized population analysis and molecular quantum similarity approach , 2007, J. Comput. Chem..

[8]  V. H. Smith,et al.  Relationships between Jaynes entropy of the one-particle density matrix and Shannon entropy of the electron densities , 2002 .

[9]  R. Parthasarathi,et al.  Hydrogen bonding of DNA base pairs and information entropy: From molecular electron density perspective , 2006 .

[10]  S. R. Gadre,et al.  An information theoretic synthesis and analysis of Compton profiles , 1981 .

[11]  Ricardo A. Mosquera,et al.  QTAIM n‐center delocalization indices as descriptors of aromaticity in mono and poly heterocycles , 2007, J. Comput. Chem..

[12]  K. Sen Characteristic features of Shannon information entropy of confined atoms. , 2005, The Journal of chemical physics.

[13]  Mario Giambiagi,et al.  Multicenter bond indices as a measure of aromaticity , 2000 .

[14]  Miquel Solà,et al.  On the performance of some aromaticity indices: A critical assessment using a test set , 2008, J. Comput. Chem..

[15]  J. Aihara,et al.  Local aromaticities in large polyacene molecules. , 2005, The journal of physical chemistry. A.

[16]  Yuansheng Jiang,et al.  The valence bond calculations for conjugated hydrocarbons having 24–28 π‐electrons , 2000 .

[17]  S. Kuwajima Valence bond theory of aromaticity , 1984 .

[18]  R. Mallion,et al.  ‘‘Ring‐current’’ effects on 1H‐NMR chemical shifts in linear acenes , 1982 .

[19]  P. Schleyer,et al.  Hyperconjugative π-Aromaticity: How To Make Cyclopentadiene Aromatic , 1999 .

[20]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[21]  R. C. Benson,et al.  Molecular Zeeman effect of cyclopentadiene and isoprene and comparison of the magnetic susceptibility anisotropies , 1970 .

[22]  Wenguo Xu,et al.  Structures and aromaticity of the planar Si2BX (X = Li, K, O, S) clusters , 2008 .

[23]  R. H. Mitchell Measuring aromaticity by NMR. , 2001, Chemical reviews.

[24]  A. Stanger Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. , 2006, The Journal of organic chemistry.

[25]  A. Koch,et al.  Cyclobutadiene dianion derivatives – Planar 4c,6e or three-dimensional 6c,6e aromaticity? , 2008 .

[26]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[27]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[28]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[29]  Paul von Ragué Schleyer,et al.  Alkyl Substituent effects on the stability of protonated benzene , 1974 .

[30]  J. F. Liebman,et al.  The energetics of aromatic hydrocarbons: an experimental thermochemical perspective. , 2001, Chemical reviews.

[31]  Pedro Salvador,et al.  Electron sharing indexes at the correlated level. Application to aromaticity calculations. , 2007, Faraday discussions.

[32]  W. Flygare,et al.  Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters , 1974 .

[33]  M. Nielsen,et al.  On the aromaticity of tetrathiafulvalene cations , 2008 .

[34]  T. M. Krygowski,et al.  Structural aspects of aromaticity. , 2001, Chemical reviews.

[35]  R. Bader,et al.  Bond paths are not chemical bonds. , 2009, The journal of physical chemistry. A.

[36]  C. Glidewell,et al.  Mndo study of bond orders in some conjugated BI- and tri-cyclic hydrocarbons , 1984 .

[37]  Facts and artifacts about aromatic stability estimation , 2003 .

[38]  Alexander I Boldyrev,et al.  On the resonance energy in new all-metal aromatic molecules. , 2002, Inorganic chemistry.

[39]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[40]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[41]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[42]  Ágnes Nagy,et al.  Fisher information in density functional theory , 2003 .

[43]  M. Solà,et al.  Relation between the substituent effect and aromaticity. , 2004, The Journal of organic chemistry.

[44]  R. Parr,et al.  Information Theory Thermodynamics of Molecules and Their Hirshfeld Fragments , 2001 .

[45]  I. Gutman,et al.  Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems , 1977 .

[46]  R. Nalewajski Information principles in the loge theory , 2003 .

[47]  Hyp J. Dauben,et al.  Diamagnetic susceptibility exaltation in hydrocarbons , 1969 .

[48]  N. Mills,et al.  Summation of nucleus independent chemical shifts as a measure of aromaticity. , 2007, The Journal of organic chemistry.

[49]  Miquel Solà,et al.  Assessment of Clar's aromatic π-sextet rule by means of PDI, NICS and HOMA indicators of local aromaticity† , 2005 .

[50]  L. J. Schaad,et al.  Hueckel molecular orbital .pi. resonance energies. New approach , 1971 .

[51]  N. H. March,et al.  Central‐Field Approach for NH3 and H2O , 1957 .

[52]  Wenguo Xu,et al.  Structures and aromaticity of the planar B2XY (X = N, P and Y = O, S, Se) and Al2MN (M = C, Si, Ge and N = S, Se) clusters , 2009 .

[53]  J. Gauss,et al.  Calculation of spin-current densities using gauge-including atomic orbitals , 2004 .

[54]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[55]  P. Geerlings,et al.  Quantum similarity of atoms: a numerical Hartree-Fock and Information Theory approach , 2004 .

[56]  Werner Kutzelnigg,et al.  Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities , 1982 .

[57]  T. M. Krygowski,et al.  Definition of aromaticity basing on the harmonic oscillator model , 1972 .

[58]  Xavier Fradera,et al.  The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. , 2003, Chemistry.

[59]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[60]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[61]  G. Seifert,et al.  The induced magnetic field in cyclic molecules. , 2004, Chemistry.

[62]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[63]  L. Radom Ab initio molecular orbital calculations on anions. Determination of gas phase acidities , 1974 .

[64]  M. Solà,et al.  A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. , 2006, Chemistry.

[65]  Mikhail N. Glukhovtsev,et al.  Aromaticity and Antiaromaticity: Electronic and Structural Aspects , 1994 .

[66]  Roman F. Nalewajski,et al.  Information principles in the theory of electronic structure , 2003 .

[67]  L. J. Schaad,et al.  Hueckel molecular orbital .pi. resonance energies. Benzenoid hydrocarbons , 1971 .

[68]  O. Polansky,et al.  Zur Clar'schen Theorie Lokaler Benzoider Gebiete in Kondensierten Aromaten , 1967 .

[69]  Siân T. Howard,et al.  Benzenoid hydrocarbon aromaticity in terms of charge density descriptors , 1997 .

[70]  Miquel Solà,et al.  Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. , 2005, Chemical reviews.

[71]  Shubin Liu,et al.  On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules. , 2007, The Journal of chemical physics.

[72]  P. Fowler,et al.  Substituent effects on induced current densities in penta- and heptafulvenes , 2002 .

[73]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[74]  J. Pople,et al.  Diamagnetic Anisotropy of Electron Groups , 1965 .

[75]  Thomas Heine,et al.  σ and π contributions to the induced magnetic field: Indicators for the mobility of electrons in molecules , 2007, J. Comput. Chem..

[76]  José Elguero,et al.  Application of Free-Wilson matrices to the analysis of the tautomerism and aromaticity of azapentalenes: a DFT study , 2008 .

[77]  K. Jug A bond order approach to ring current and aromaticity , 1983 .

[78]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[79]  M. Cyrański Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. , 2005, Chemical reviews.

[80]  Thomas Heine,et al.  Description of electron delocalization via the analysis of molecular fields. , 2005, Chemical reviews.

[81]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[82]  L. Salem The molecular orbital theory of conjugated systems , 1966 .

[83]  Philippe François,et al.  Recherches sur la géométrie de quelques hydrocarbures non-alternants: son influence sur les énergies de transition, une nouvelle définition de l'aromaticité , 1967 .

[84]  Fang Zheng,et al.  Electron Affinities of Aln Clusters and Multiple-Fold Aromaticity of the Square Al42- Structure , 2002 .

[85]  N. H. Martin,et al.  Computation of through-space NMR shielding effects by small-ring aromatic and antiaromatic hydrocarbons. , 2006, Journal of molecular graphics & modelling.

[86]  J. Aihara A new definition of Dewar-type resonance energies , 1976 .

[87]  Leo Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation , 1970 .

[88]  M. Randic Conjugated circuits and resonance energies of benzenoid hydrocarbons , 1976 .

[89]  J. Elguero,et al.  Heteropentalenes aromaticity: A theoretical study , 2008 .

[90]  Paul von Ragué Schleyer,et al.  Aromaticity and Antiaromaticity in Five‐Membered C4H4X Ring Systems: “Classical” and “Magnetic” Concepts May Not Be “Orthogonal” , 1995 .

[91]  C. Bock,et al.  Homodesmotic reactions for the assessment of stabilization energies in benzenoid and other conjugated cyclic hydrocarbons , 1976 .