The Shifted Harmonic Oscillator and the Hypoelliptic Laplacian on the Circle

We study the semigroup generated by the hypoelliptic Laplacian on the circle and the maximal bounded holomorphic extension of this semigroup. Using an orthogonal decomposition into harmonic oscillators with complex shifts, we describe the domain of this extension and we show that boundedness in a half-plane corresponds to absolute convergence of the expansion of the semigroup in eigenfunctions. This relies on a novel integral formula for the spectral projections which also gives asymptotics for Laguerre polynomials in a large-parameter regime.

[1]  J. Viola Spectral projections and resolvent bounds for partially elliptic quadratic differential operators , 2012, 1206.3767.

[2]  Raphael Henry Spectral instability for even non-selfadjoint anharmonic oscillators , 2013, 1301.5327.

[3]  Leon M. Hall,et al.  Special Functions , 1998 .

[4]  Oskar Perron Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenztem Wachstum eines Parameters. , 1921 .

[5]  E. Davies,et al.  Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  G. Andrews,et al.  Special Functions: The Hypergeometric Functions , 1999 .

[7]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[8]  E. Davies,et al.  Linear Operators and their Spectra , 2007 .

[9]  Vladimir Lifschitz,et al.  The Number of Increasing Subsequences of the Random Permutation , 1981, J. Comb. Theory, Ser. A.

[10]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[11]  D. Krejčiřík,et al.  Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.

[12]  A. Aleman,et al.  On weak and strong solution operators for evolution equations coming from quadratic operators , 2014, 1409.1262.

[13]  P. Miller Applied asymptotic analysis , 2006 .

[14]  E. Davies Wild Spectral Behaviour of Anharmonic Oscillators , 2000 .

[15]  A. Aleman,et al.  Singular-Value Decomposition of Solution Operators to Model Evolution Equations , 2014, 1409.1255.

[16]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[17]  B. Mityagin,et al.  Differential operators admitting various rates of spectral projection growth , 2013, 1309.3751.

[18]  Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators , 2018 .

[19]  G. Folland Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .

[20]  G. Folland Harmonic analysis in phase space , 1989 .

[21]  Spectral decompositions and $\mathbb{L}^2$-operator normsof toy hypocoercive semi-groups , 2013 .

[22]  A. Kuijlaars,et al.  Spectral Asymptotics of the Non‐Self‐Adjoint Harmonic Oscillator , 2004 .

[23]  Fabio Bagarello,et al.  Examples of pseudo-bosons in quantum mechanics , 2010, 1007.4349.

[24]  The elliptic evolution of non-self-adjoint degree-2 Hamiltonians , 2017, 1701.00801.