Bounding cohomology classes over semiglobal fields

. We provide a uniform bound for the index of cohomology classes in H i p F, µ b i ´ 1 ℓ q when F is a semiglobal field (i.e., a one-variable function field over a complete discretely valued field K ). The bound is given in terms of the analogous data for the residue field of K and its finitely generated extensions of transcendence degree at most one. We also obtain analogous bounds for collections of cohomology classes. Our results provide recursive formulas for function fields over higher rank complete discretely valued fields, and explicit bounds in some cases when the information on the residue field is known.

[1]  Makoto Sakagaito A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings , 2019, Comptes Rendus. Mathématique.

[2]  Saurabh Gosavi Generalized period-index problem with an application to quadratic forms. , 2019, 1910.02473.

[3]  G. Militaru,et al.  Associative algebras , 2019, Extending Structures.

[4]  D. Harbater,et al.  Local-global Galois theory of arithmetic function fields , 2017, Israel Journal of Mathematics.

[5]  Suresh Venapally Third Galois cohomology group of function fields of curves over number fields , 2017, 1706.03089.

[6]  Uriya A. First,et al.  On the number of generators of an algebra , 2016, 1610.08156.

[7]  D. Krashen Period and index, symbol lengths, and generic splittings in Galois cohomology , 2013, 1305.5217.

[8]  R. Parimala,et al.  Degree 3 Cohomology of Function Fields of Surfaces , 2016 .

[9]  D. Harbater,et al.  Refinements to patching and applications to field invariants , 2014, 1404.4349.

[10]  Max Lieblich,et al.  Colliot-Thelene’s conjecture and finiteness of u-invariants , 2012, 1209.6418.

[11]  D. Harbater,et al.  Local-global principles for Galois cohomology , 2012, 1208.6359.

[12]  R. Guglielmetti,et al.  The Brauer-Grothendieck group , 2012 .

[13]  D. M. Clark Theory of Groups , 2012 .

[14]  Max Lieblich The period-index problem for fields of transcendence degree 2 , 2009, 0909.4345.

[15]  D. Harbater,et al.  Patching subfields of division algebras , 2009, 0904.1594.

[16]  D. Harbater,et al.  Applications of patching to quadratic forms and central simple algebras , 2008, 0809.4481.

[17]  C. Weibel The norm residue isomorphism theorem , 2009 .

[18]  Vladimir Voevodsky,et al.  On motivic cohomology with Z/l -coefficients , 2008, 0805.4430.

[19]  Max Lieblich Twisted sheaves and the period-index problem , 2005, Compositio Mathematica.

[20]  Expositiones Mathematicae New light on Hensel ’ s lemma , 2008 .

[21]  D. Harbater,et al.  Patching over fields , 2007, 0710.1392.

[22]  Max Lieblich Period and index in the Brauer group of an arithmetic surface , 2007, math/0702240.

[23]  V. Suresh Galois cohomology in degree 3 of function fields of curves over number fields , 2004 .

[24]  A. J. Jong The period-index problem for the Brauer group of an algebraic surface , 2004 .

[25]  J. Neukirch Algebraic Number Theory , 1999 .

[26]  R. Parimala,et al.  Isotropy of quadratic forms over function fields ofp-adic curves , 1998 .

[27]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[28]  S. Bloch,et al.  p-Adic etale cohomology , 1986 .

[29]  Kazuya Kato A Hasse principle for two dimensional global fields. , 1986 .

[30]  Joseph Lipman,et al.  Desingularization of two-dimensional schemes , 1978 .

[31]  L. Illusie Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 , 1977 .

[32]  S. Lipman,et al.  Introduction to resolution of singularities , 1974 .

[33]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .

[34]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[35]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.