Support Vector Regression Machines to Evaluate Resonant Frequency of Elliptic Substrate Integrate Waveguide Resonators

In this paper an efficient technique for the determination of the resonances of elliptic Substrate Integrated Waveguide (SIW) resonators is presented. The method is based on the implementation of Support Vector Regression Machines trained using a fast algorithm for the computation of the resonant frequencies of SIW structures. Results for resonators with a wide range of parameters will be presented. A comparison with results obtained with Multi Layer Perceptron Artificial Neural Network and with full wave simulations will show the effectiveness of the proposed approach.

[1]  Yuehang Xu,et al.  AN SUPPORT VECTOR REGRESSION BASED NONLINEAR MODELING METHOD FOR SIC MESFET , 2008 .

[2]  Mahmoud Shahabadi,et al.  Loss Mechanisms in SIW and Msiw , 2008 .

[3]  Ruimin Xu,et al.  Modeling of SiC MESFETs by Using Support Vector Machine Regression , 2007 .

[4]  Tao Yang,et al.  Mim Capacitor Modeling by Support Vector Regression , 2008 .

[5]  C. Liang,et al.  Novel Dual-Mode Bandpass Filter with Transmission Zeros using Substrate Integrated Waveguide Cavity , 2008 .

[6]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  K. Wu,et al.  Integrated microstrip and rectangular waveguide in planar form , 2001, IEEE Microwave and Wireless Components Letters.

[9]  M. Cacciola,et al.  TEC Measurements Through GPS and Artificial Intelligence , 2006 .

[10]  L. Tsang,et al.  Modeling of multiple scattering among vias in planar waveguides using Foldy–Lax equations , 2001 .

[11]  Vincenzo Barrile,et al.  SAR Imagery Classification using Multi-class Support Vector Machines , 2005 .

[12]  Ke Wu,et al.  Single-substrate integration technique of planar circuits and waveguide filters , 2003 .

[13]  Mario Versaci,et al.  Resonant frequency evaluation of microstrip antennas using a neural-fuzzy approach , 2003 .

[14]  S. Gunn Support Vector Machines for Classification and Regression , 1998 .

[15]  Mohammad Khalaj-Amirhosseini,et al.  Compact Bandpass Filters Utilizing Dielectric Filled Waveguides , 2008 .

[16]  Wei Hong,et al.  Optimal design of compact millimetre-wave SIW circular cavity filters , 2005 .

[17]  Giovanni Angiulli,et al.  On the Computation of Nonlinear Eigenvalues in Electromagnetic Problems , 2007 .

[18]  G. Amendola,et al.  Analysis of Substrate Integrated Waveguide Structures Based on the Parallel-Plate Waveguide Green's Function , 2008, IEEE Transactions on Microwave Theory and Techniques.

[19]  William H. Press,et al.  Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.

[20]  M. Cacciola,et al.  Microwave Devices and Antennas Modelling by Support Vector Regression Machines , 2006, IEEE Transactions on Magnetics.

[21]  Y. Chow,et al.  Investigation on the Ohmic Conductor Losses in Substrate-integrated Waveguide and Equivalent Rectangular Waveguide , 2007 .

[22]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[23]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[24]  B. Biglarbegian,et al.  A novel bandpass waveguide filter structure on SIW technology , 2008 .

[25]  L. Boccia,et al.  Resonant Frequencies of Circular Substrate Integrated Resonators , 2008, IEEE Microwave and Wireless Components Letters.