The design of robotic mechanisms is a complex process involving geometric, kinematic, dynamic, tolerance, and stress analyses. In the design of a real system, the construction of a physical prototype is often considered. Indeed, a physical prototype helps the designer to identify the fundamental characteristics and the potential pitfalls of the proposed architecture. However, the design and fabrication of a prototype using traditional techniques is rather long, tedious, and costly. In this context, the availability of rapid prototyping machines can be exploited in order to allow designers of robotic mechanisms to build prototypes rapidly and at a low cost. In the article, the rapid prototyping of mechanisms using a commercially available computer-aided design (CAD) package and a fused deposition modeling (FDM) rapid prototyping machine is presented. A database of lower kinematic pairs (joints) is developed using the CAD package, and parameters of fabrication are determined experimentally for each of the joints. These joints are then used in the design of the prototypes where the links are developed and adapted to the particular geometries of the mechanisms to be built. Also, a procedure is developed to build gears and Geneva mechanisms. Examples of mechanisms are then studied and their design is presented. For each mechanism, the joints are described and the design of the links is discussed. Some of the physical prototypes built using the FDM rapid prototyping machine are shown.
[1]
Clément Gosselin,et al.
The agile eye: a high-performance three-degree-of-freedom camera-orienting device
,
1994,
Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
[2]
Brad David Geving.
Enhancement of stereolithography technology to support building around inserts
,
2000
.
[3]
David W. Rosen,et al.
Building around inserts: methods for fabricating complex devices in stereolithography
,
2001
.
[4]
Constantinos Mavroidis,et al.
FABRICATION OF A ROBOTIC HAND USING RAPID PROTOTYPING
,
2000
.
[5]
Bhaskar Dasgupta,et al.
The Stewart platform manipulator: a review
,
2000
.
[6]
S. Ashley,et al.
Rapid prototyping systems
,
1991
.
[7]
S. Ashley,et al.
Rapid prototyping is coming of age
,
1995
.