Studying the governing factors on the photo(electro)catalytic activity of surface-modified photocatalysts under visible light illumination

[1]  M. Sultana,et al.  A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation , 2022, Journal of Water Process Engineering.

[2]  D. Hertel,et al.  Perovskite–organic tandem solar cells with indium oxide interconnect , 2022, Nature.

[3]  G. Vitiello,et al.  Interfacial Charge Transfer Complexes in TiO2-Enediol Hybrids Synthesized by Sol–Gel , 2022, Langmuir : the ACS journal of surfaces and colloids.

[4]  Jiaguo Yu,et al.  Heterojunction Systems for Photocatalysis , 2021, Semiconductor Solar Photocatalysts.

[5]  K. Sivula Mott–Schottky Analysis of Photoelectrodes: Sanity Checks Are Needed , 2021, ACS Energy Letters.

[6]  S. Jadkar,et al.  Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells , 2021, ACS omega.

[7]  M. Mosquera,et al.  Effects of surface functionalization with alkylalkoxysilanes on the structure, visible light photoactivity and biocidal performance of Ag-TiO2 nanoparticles , 2021 .

[8]  A. Kotarba,et al.  Design, engineering, and performance of nanorod-Fe2O3@rGO@LaSrFe2-Co O6 (n = 0, 1) composite architectures: The role of double oxide perovskites in reaching high solar to hydrogen efficiency , 2020 .

[9]  Mohd Syukri Ali,et al.  Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review , 2020 .

[10]  Emily K. Newes,et al.  Energy, economic, and environmental benefits assessment of co-optimized engines and bio-blendstocks , 2020, Energy & Environmental Science.

[11]  Jiaguo Yu,et al.  S-Scheme Heterojunction Photocatalyst , 2020, Chem.

[12]  Alexandria R. C. Bredar,et al.  Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications , 2020, ACS Applied Energy Materials.

[13]  Shi-bi Fang,et al.  Surface Functionalization of TiO2 Nanoparticles Influences the Conductivity of Ionic Liquid-Based Composite Electrolytes , 2020 .

[14]  A. Chroneos,et al.  Defect processes in F and Cl doped anatase TiO2 , 2019, Scientific Reports.

[15]  W. Macyk,et al.  Photogeneration of reactive oxygen species over ultrafine TiO2 particles functionalized with rutin–ligand induced sensitization and crystallization effects , 2019, Research on Chemical Intermediates.

[16]  Robert A. Taylor,et al.  Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures , 2019, Nature Communications.

[17]  K. Jacobsen,et al.  Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cells , 2019, Chemistry of Materials.

[18]  Tsunghsueh Wu,et al.  Salicylic acid‐sensitised titanium dioxide for photocatalytic degradation of fast green FCF under visible light irradiation , 2019, Micro & Nano Letters.

[19]  W. Macyk,et al.  Efficient synthesis of BiFeO3 by the microwave-assisted sol-gel method: “A” site influence on the photoelectrochemical activity of perovskites , 2019, Applied Surface Science.

[20]  Hong Bi,et al.  Ti3+ self-doping in bulk of rutile TiO2 for enhanced photocatalysis , 2019, Scripta Materialia.

[21]  T. Sarna,et al.  The Ability of Functionalized Fullerenes and Surface‐Modified TiO2 Nanoparticles to Photosensitize Peroxidation of Lipids in Selected Model Systems , 2018, Photochemistry and photobiology.

[22]  W. Macyk,et al.  How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. , 2018, The journal of physical chemistry letters.

[23]  M. B. Yagci,et al.  Efficient synthesis of perovskite-type oxide photocathode by nonhydrolytic sol-gel method with an enhanced photoelectrochemical activity , 2018, Journal of Alloys and Compounds.

[24]  L. Yate,et al.  Optical and semiconductive properties of binary and ternary thin films from the Nb-Ti-O system , 2018, Results in Physics.

[25]  Taymaz Tabari,et al.  Predominant role of grafted iron(III) Schiff-base complex in oxidation of gaseous and aqueous reactants: A visible light responsive photocatalyst , 2017 .

[26]  David G. Evans,et al.  TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting , 2016 .

[27]  G. Gigli,et al.  The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots. , 2016, Angewandte Chemie.

[28]  Li-li Yu,et al.  Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts. , 2016, ACS applied materials & interfaces.

[29]  Anna Matuszek,et al.  On Oxygen Activation at Rutile- and Anatase-TiO2 , 2015 .

[30]  D. Uner,et al.  The influence of relative humidity on photocatalytic oxidation of nitric oxide (NO) over TiO2 , 2015 .

[31]  Xiaoping Zhou,et al.  Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases , 2015 .

[32]  P. Sautet,et al.  Anionic or Cationic S-Doping in Bulk Anatase TiO2: Insights on Optical Absorption from First Principles Calculations , 2013 .

[33]  Afaq Ahmad,et al.  Synthesis, spectroscopic investigations, antimicrobial and DNA binding studies of a new charge transfer complex of o-phenylenediamine with 3,5-dinitrosalicylic acid. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[34]  Victoria Dutschk,et al.  Surface modification of TiO2 nanoparticles with silane coupling agents , 2012 .

[35]  L. Kavan,et al.  Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). , 2012, Physical chemistry chemical physics : PCCP.

[36]  R. Amal,et al.  Effect of TiO2 nanoparticle surface functionalization on protein adsorption, cellular uptake and cytotoxicity: the attachment of PEG comb polymers using catalytic chain transfer and thiol–ene chemistry , 2012 .

[37]  M. Karabacak,et al.  Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  G. Mailhot,et al.  Performance and selectivity of the terephthalic acid probe for OH as a function of temperature, pH and composition of atmospherically relevant aqueous media , 2011 .

[39]  N. Robertson,et al.  Photocurrent Switching Effects in TiO2 Modified with Ruthenium Polypyridine Complexes , 2011 .

[40]  K. Szaciłowski,et al.  Titanium(IV) complexes as direct TiO2 photosensitizers , 2010 .

[41]  Nir Baram,et al.  Electrochemical Impedance Spectroscopy of Porous TiO2 for Photocatalytic Applications , 2010 .

[42]  Sylwia A. Gaweda,et al.  Photosensitization and Photocurrent Switching in Carminic Acid/Titanium Dioxide Hybrid Material , 2008 .

[43]  H. Shayani-jam,et al.  Electrochemical oxidation of 3,5-di-tert-butylcatechol : Synthesis and characterization of the formed ortho-benzoquinhydrone derivative , 2006 .

[44]  K. Szaciłowski,et al.  Optoelectronic switches based on wide band gap semiconductors. , 2006, The journal of physical chemistry. B.

[45]  Abdurrahman Tanyolaç,et al.  Biosynthesis and Characterization of Laccase Catalyzed Poly(Catechol) , 2003 .

[46]  L. Gao,et al.  Adsorption of salicylic acid, 5-sulfosalicylic acid and Tiron at the alumina–water interface , 2002 .

[47]  Tijana Rajh,et al.  Surface Restructuring of Nanoparticles: An Efficient Route for Ligand−Metal Oxide Crosstalk , 2002 .

[48]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[49]  S. Martin,et al.  Surface Structures of 4-Chlorocatechol Adsorbed on Titanium Dioxide , 1996 .