A Comparative Analysis of RÖssler Type Dynamics and Laser Systems

We introduce the standard Rossler oscillator and extend it from a system defined on ℝ3 to a system defined on ${\mathbb R}^2 \times {\mathbb C}$. We extend the system in such a way that the simple ...

[1]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[2]  John R. Terry Synchronization of coupled systems. , 2000 .

[3]  Winful,et al.  Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. , 1990, Physical review letters.

[4]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[5]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[6]  Krešimir Josić,et al.  Synchronization of chaotic systems and invariant manifolds , 2000 .

[7]  E. Ott,et al.  Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .

[8]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[9]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[10]  John R. Terry,et al.  Blowout bifurcation in a system of coupled chaotic lasers , 1998 .

[11]  O. Rössler An equation for continuous chaos , 1976 .

[12]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. III Mapping Model for Continuous System , 1984 .

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  John Milnor,et al.  On the concept of attractor: Correction and remarks , 1985 .

[15]  J. Milnor On the concept of attractor , 1985 .

[16]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .

[17]  John R. Terry,et al.  Synchronization of chaos in an array of three lasers , 1999 .

[18]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[19]  John R. Terry Detuning and symmetry breaking in a system of coupled chaotic lasers , 1999 .

[20]  Jürgen Kurths,et al.  Alternating Locking Ratios in Imperfect Phase Synchronization , 1999 .

[21]  P. Grassberger,et al.  Symmetry breaking bifurcation for coupled chaotic attractors , 1991 .

[22]  Grebogi,et al.  Riddling Bifurcation in Chaotic Dynamical Systems. , 1996, Physical review letters.

[23]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[24]  Grigory V. Osipov,et al.  PHASE SYNCHRONIZATION EFFECTS IN A LATTICE OF NONIDENTICAL ROSSLER OSCILLATORS , 1997 .

[25]  P. Ashwin,et al.  On riddling and weak attractors , 2000 .