Unweighted Stochastic Local Search can be Effective for Random CSP Benchmarks

We present ULSA, a novel stochastic local search algorithm for random binary constraint satisfaction problems (CSP). ULSA is many times faster than the prior state of the art on a widely-studied suite of random CSP benchmarks. Unlike the best previous methods for these benchmarks, ULSA is a simple unweighted method that does not require dynamic adaptation of weights or penalties. ULSA obtains new record best solutions satisfying 99 of 100 variables in the challenging frb100-40 benchmark instance.

[1]  Patrick Prosser,et al.  An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[2]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[3]  Abdul Sattar,et al.  A New Local Search Strategy for SAT , 2011 .

[4]  Clara Diaz,et al.  Identifying large sets of unrelated individuals and unrelated markers , 2014, Source Code for Biology and Medicine.

[5]  Steven Minton,et al.  Solving Large-Scale Constraint-Satisfaction and Scheduling Problems Using a Heuristic Repair Method , 1990, AAAI.

[6]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[7]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[8]  Andrew J. Doig,et al.  Maximising the Size of Non-Redundant Protein Datasets Using Graph Theory , 2013, PloS one.

[9]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[10]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[11]  Kaile Su,et al.  EWLS: A New Local Search for Minimum Vertex Cover , 2010, AAAI.

[12]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[13]  Mauro Brunato,et al.  Cooperating local search for the maximum clique problem , 2011, J. Heuristics.

[14]  Wayne J. Pullan,et al.  Dynamic Local Search for the Maximum Clique Problem , 2011, J. Artif. Intell. Res..

[15]  Thomas Stützle,et al.  Stochastic Local Search , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[16]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[17]  Ke Xu,et al.  Combining Edge Weight and Vertex Weight for Minimum Vertex Cover Problem , 2014, FAW.

[18]  Richard J. Wallace,et al.  Analysis of Heuristic Methods for Partial Constraint Satisfaction Problems , 1996, CP.

[19]  Malte Helmert,et al.  A Stochastic Local Search Approach to Vertex Cover , 2007, KI.

[20]  Abdul Sattar,et al.  NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover , 2014, J. Artif. Intell. Res..