High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg

[1]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[2]  Limin Zhu,et al.  An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries , 2012 .

[3]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[4]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[5]  A. Pelton,et al.  The Li-P (lithium-phosphorus) system , 1995 .

[6]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[7]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[8]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[9]  Min Zhou,et al.  Nanosized Na4Fe(CN)6/C Composite as a Low‐Cost and High‐Rate Cathode Material for Sodium‐Ion Batteries , 2012 .

[10]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[11]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[12]  Jianjun Li,et al.  Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. , 2012, Angewandte Chemie.

[13]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[14]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[15]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[16]  J. Sangster Na-P (Sodium-Phosphorus) System , 2010 .

[17]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[18]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[19]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[20]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[21]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[22]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[23]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[24]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[25]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[26]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[27]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[28]  Limin Zhu,et al.  Fe(CN)6−4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries , 2012 .

[29]  Jiangfeng Qian,et al.  Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. , 2012, Chemical communications.

[30]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .