Thermal-electric model for piezoelectric ZnO nanowires

The behavior of ZnO nanowires under uniaxial loading is characterized by means of a numerical model that accounts for all coupled mechanical, electrical, and thermal effects. The paper shows that thermal effects in the nanowires may greatly impact the predicted performance of piezoelectric and piezotronic nanodevices. The pyroelectric effect introduces new equivalent volumic charge in the body of the nanowire and surface charges at the boundaries, where Kapitza resistances are located, that act together with the piezoelectric charges to improve the predicted performance. It is shown that the proposed model is able to reproduce several effects experimentally observed by other research groups, and is a promising tool for the design of ultra-high efficient nanodevices.

[1]  Tungyang Chen,et al.  Effect of Kapitza contact and consideration of tube-end transport on the effective conductivity in nanotube-based composites , 2005 .

[2]  Sz. Fujita,et al.  Self-assembled ZnO quantum dots with tunable optical properties , 2006 .

[3]  Jinhui Song,et al.  Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices , 2007 .

[4]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[5]  E. A. Eliseev,et al.  Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting , 2010 .

[6]  D. Ieşan Thermopiezoelectricity without energy dissipation , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Zhong‐Lin Wang,et al.  Fundamental Theory of Piezotronics , 2011, Advanced materials.

[8]  J. Connell,et al.  In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires. , 2014, Small.

[9]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[10]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[11]  Zhong Lin Wang,et al.  Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. , 2008, Nano letters.

[12]  Fang Zhang,et al.  Nano‐Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect , 2013, Advanced materials.

[13]  J. Yvonnet,et al.  First-principles based multiscale model of piezoelectric nanowires with surface effects , 2013 .

[14]  Zhong Lin Wang,et al.  Temperature dependence of the piezotronic effect in ZnO nanowires. , 2013, Nano letters.

[15]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[16]  D. Chandrasekharaiah A generalized linear thermoelasticity theory for piezoelectric media , 1988 .

[17]  Paolo Burghignoli,et al.  Piezo‐Semiconductive Quasi‐1D Nanodevices with or without Anti‐Symmetry , 2012, Advanced materials.

[18]  Mark E. Welland,et al.  Analysis of failure mechanisms in electrically stressed Au nanowires , 1999 .

[19]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[20]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[21]  Sheng-Po Chang,et al.  A ZnO nanowire-based humidity sensor , 2010 .

[22]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[23]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[24]  Horacio D Espinosa,et al.  In situ TEM electromechanical testing of nanowires and nanotubes. , 2012, Small.

[25]  Sang‐Woo Kim,et al.  Energy harvesting based on semiconducting piezoelectric ZnO nanostructures , 2012 .

[26]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[27]  Horacio D Espinosa,et al.  Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. , 2011, Nano letters.

[28]  Majid Minary-Jolandan,et al.  Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity , 2009, Nanotechnology.

[29]  S. Tomić,et al.  Importance of non linear piezoelectric effect in Wurtzite III-N semiconductors , 2012 .

[30]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[31]  Jian Shi,et al.  Fundamental study of mechanical energy harvesting using piezoelectric nanostructures , 2010 .

[32]  Elisa Riedo,et al.  Elastic property of vertically aligned nanowires. , 2005, Nano letters.

[33]  Qingliang Liao,et al.  Scanning Probe Study on the Piezotronic Effect in ZnO Nanomaterials and Nanodevices , 2012, Advanced materials.

[34]  Min Zhou,et al.  Size-dependent thermal conductivity of zinc oxide nanobelts , 2006 .

[35]  Seung-Ho Jung,et al.  A Sonochemical Approach to the Fabrication of Laterally Aligned ZnO Nanorod Field Emitter Arrays on a Planar Substrate , 2011, IEEE Transactions on Nanotechnology.

[36]  Long Lin,et al.  Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. , 2012, ACS nano.

[37]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics—fundamentals and applications , 2014 .

[38]  Zhong Lin Wang,et al.  Toward self-powered sensor networks , 2010 .

[39]  Salvatore Celozzi,et al.  Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires , 2014, Sensors.

[40]  Ching,et al.  Electronic, optical, and structural properties of some wurtzite crystals. , 1993, Physical review. B, Condensed matter.

[41]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[42]  Zhong Lin Wang,et al.  Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. , 2006, Nano letters.

[43]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[44]  M. Migliorato,et al.  Non-linear piezoelectricity in wurtzite ZnO semiconductors , 2013 .

[45]  S. Tomić,et al.  Second-order piezoelectricity in wurtzite III-N semiconductors , 2011 .

[46]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[47]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[48]  Yan Zhang,et al.  Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. , 2012, ACS nano.

[49]  Zhong Lin Wang,et al.  One-dimensional ZnO nanostructures: Solution growth and functional properties , 2011 .

[50]  Young-Jun Park,et al.  Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators , 2010, Advanced materials.

[51]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[52]  N. Plank,et al.  Review of hydrothermal ZnO nanowires: Toward FET applications , 2013 .

[53]  K R Robinson,et al.  The responses of cells to electrical fields: a review , 1985, The Journal of cell biology.

[54]  Mario G. Ancona,et al.  Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation , 2012 .

[55]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[56]  M. Pea,et al.  ZnO nanowires strips growth: Template reliability and morphology study , 2014 .

[57]  Zhong Lin Wang,et al.  Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. , 2009, Nano letters.

[58]  Federico Capasso,et al.  Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. , 2006, Nano letters.

[59]  C. Sow,et al.  Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. , 2012, Small.

[60]  M. Schubert,et al.  Infrared dielectric functions and phonon modes of high-quality ZnO films , 2003 .

[61]  H. Espinosa,et al.  Multiscale Experiments: State of the Art and Remaining Challenges , 2009 .

[62]  Aldo Di Carlo,et al.  Piezoelectric potential in vertically aligned nanowires for high output nanogenerators , 2011, Nanotechnology.

[63]  Y. Im,et al.  Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. , 2008, Small.

[64]  M. Pea,et al.  The Clash of Mechanical and Electrical Size‐Effects in ZnO Nanowires and a Double Power Law Approach to Elastic Strain Engineering of Piezoelectric and Piezotronic Devices , 2014, Advanced materials.

[65]  Majid Minary-Jolandan,et al.  A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires , 2012, Advanced materials.

[66]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[67]  Christian Falconi,et al.  Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion , 2013, Nanotechnology.

[68]  M. Pea,et al.  Current–Voltage Characteristics of ZnO Nanowires Under Uniaxial Loading , 2014, IEEE Transactions on Nanotechnology.